Rogério de Lemos
Cristina Gacek
Alexander Romanovsky (Eds.)

—
U
i
D
il m
w
S
e
D
et
(4]
e
W

Survey

Architecting
Dependable
Systems IV

Presentation Layer

Data Layer

@ Springer

Rogério de Lemos
Cristina Gacek
Alexander Romanovsky (Eds.)

Architecting
Dependable
Systems IV

@ Springer

Volume Editors

Rogério de Lemos

University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK

E-mail: r.delemos @kent.ac.uk

Cristina Gacek

Alexander Romanovsky

Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK

E-mail: {cristina.gacek, alexander.romanovsky } @ncl.ac.uk

Library of Congress Control Number: 2007931900

CR Subject Classification (1998): D.2, D.4
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74033-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74033-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting. re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way. and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12102341 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany

- Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4615

Lecture Notes in Computer Science

For information about Vols. 1-4539

please contact your bookseller or Springer

Vol. 4671: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. XIV, 635 pages. 2007.

Vol. 4660: S. DZeroski, J. Todoroski (Eds.), Computa-
tional Discovery of Scientific Knowledge. X, 327 pages.
2007. (Sublibrary LNAI).

Vol. 4651: F. Azevedo, P. Barahona, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 185 pages.
2007. (Sublibrary LNAI).

Vol. 4647: R. Martin, M. Sabin, J. Winkler (Eds.), Math-
ematics of Surfaces XII. IX, 509 pages. 2007.

Vol. 4643: M.-F. Sagot, M.E.M.T. Walter (Eds.), Ad-
vances in Bioinformatics and Computational Biology.
IX, 177 pages. 2007. (Sublibrary LNBI).

Vol. 4632: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaiane
(Eds.), Advanced Data Mining and Applications. XV,
634 pages. 2007. (Sublibrary LNAI).

Vol. 4628: L.N. de Castro, F.J. Von Zuben, H. Knidel
(Eds.), Artificial Immune Systems. X1I, 438 pages. 2007.

Vol. 4624: T. Mossakoski, U. Mantanari, M. Haveraaen
(Eds.), Algebra and Coalgebra in Computer Science. XI,
463 pages. 2007.

Vol. 4619: F. Dehne, J.-R. Sack, N. Zeh (Eds.), Algo-
rithms and Data Structures. XVI, 662 pages. 2007.

Vol. 4617: V. Torra, Y. Narukawa, Y. Yoshida (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 502
pages. 2007. (Sublibrary LNAI).

Vol. 4616: A. Dress, Y. Xu, B. Zhu (Eds.), Combinatorial
Optimization and Applications. XI, 390 pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. X1V, 435
pages. 2007.

Vol. 4613: F.P. Preparata, Q. Fang (Eds.), Frontiers in
Algorithmics. X1, 348 pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-

formulation, and Approximation. XI, 418 pages. 2007.
(Sublibrary LNAI).

Vol. 4611: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,
J. Cao (Eds.), Ubiquitous Intelligence and Computing.
XXIII, 1257 pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.). ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovic, G.T. Heineman.
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4607: L. Baresi, P. Fraternali, G.-J. Houben (Eds.),
Web Engineering. XVI, 576 pages. 2007.

Vol. 4606: A. Pras, M. van Sinderen (Eds.), Dependable
and Adaptable Networks and Services. XIV, 149 pages.
2007. ‘

Vol. 4605: D. Papadias, D. Zhang, G. Kollios (Eds.),
Advances in Spatial and Temporal Databases. X, 479
pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-
ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007. (Sublibrary LNAI).

Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007. (Sublibrary LNAI).
Vol. 4602: S. Barker, G.-J. Ahn (Eds.), Data and Appli-
cations Security XXI. X, 291 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-
ner (Eds.), Rewriting, Computation and Proof. XVI, 273
pages. 2007.

Vol.4599: S. Vassiliadis, M. Berekovic, T.D. Himéldinen
(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XVIII, 466 pages. 2007.

Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007. (Sublibrary LNAI).

Vol. 4596: L. Arge, C. Cachin, T. Jurdzinski, A. Tarlecki
(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. BoSnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.

Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),
Artificial Intelligence in Medicine. XVI, 509 pages.
2007. (Sublibrary LNAI).

Vol. 4592: 7. Kedad, N. Lammari, E. Métais, F. Meziane,
Y. Rezgui (Eds.), Natural Language Processing and In-
formation Systems. X1V, 442 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4588: T. Harju, J. Karhumiiki, A. Lepisto (Eds.),
Developments in Language Theory. X1, 423 pages. 2007.
Vol. 4587: R. Cooper, J. Kennedy (Eds.), Data Manage-
ment. XIII, 259 pages. 2007.

Vol. 4586: J. Pieprzyk, H. Ghodosi, E. Dawson (Eds.),
Information Security and Privacy. XIV, 476 pages. 2007.

Vol. 4585: M. Kryszkiewicz, J.F. Peters, H. Rybinski,
A. Skowron (Eds.), Rough Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007. (Sublibrary LNAI).

Vol. 4584: N. Karssemeijer, B. Lelieveldt (Eds.), Infor-
mation Processing in Medical Imaging. XX, 777 pages.
2007.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol.4582:J. Lopez, P. Samarati, J.L. Ferrer (Eds.). Public
Key Infrastructure. XI, 375 pages. 2007.

Vol. 4581: A. Petrenko, M. Veanes, J. Tretmans, W.
Grieskamp (Eds.), Testing of Software and Communi-
cating Systems. XII, 379 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4579: B. M. Himmerli, R. Sommer (Eds.), Detec-
tion of atrusions and Malware, and Vulnerability As-
sessment. X, 251 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.), Appli-
cations of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
(Sublibrary LNAI).

Vol. 4577: N. Sebe, Y. Liu, Y.-t. Zhuang (Eds.), Multi-
media Content Analysis and Mining. XIII, 513 pages.
2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

Vol. 4575: T. Takagi. T. Okamoto, E. Okamoto, T.
Okamoto (Eds.), Pairing-Based Cryptography — Pairing
2007. XI, 408 pages. 2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. XIII, 407 pages. 2007. (Sublibrary LNAI).

Vol. 4572: F. Stajano, C. Meadows, S. Capkun, T. Moore
(Eds.), Security and Privacy in Ad-hoc and Sensor Net-
works. X, 247 pages. 2007.

Vol. 4571: P. Perner (Ed.), Machine Learning and Data

Mining in Pattern Recognition. XIV, 913 pages. 2007.
(Sublibrary LNAI).

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
(Sublibrary LNAI).

Vol. 4569: A. Butz, B. Fisher, A. Kriiger, P. Olivier, S.
Owada (Eds.), Smart Graphics. IX, 237 pages. 2007.
Vol. 4568: T. Ishida, S. R. Fussell, P. T. J. M. Vossen
(Eds.). Intercultural Collaboration. XIII, 395 pages.
2007.

Vol. 4566: M.J. Dainoff (Ed.), Ergonomics and Health

Aspects of Work with Computers. XVIII, 390 pages.
2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
(Sublibrary LNAI).

Vol. 4564: D. Schuler (Ed.), Online Communities and
Social Computing. XVII, 520 pages. 2007.

Vol. 4563: R. Shumaker (Ed.), Virtual Reality. XXII, 762
pages. 2007.
Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007. (Subli-
brary LNAI).

Vol. 4561: V.G. Duffy (Ed.), Digital Human Modeling.
XXIII, 1068 pages. 2007.

Vol. 4560: N. Aykin (Ed.), Usability and International-
ization, Part II. XVIII, 576 pages. 2007.

Vol. 4559: N. Aykin (Ed.), Usability and International-
ization, Part I. XVIII, 661 pages. 2007.

Vol. 4558: MLJ. Smith. G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part I1. XXIII,
1162 pages. 2007.

Vol. 4557: M.J. Smith, G. Salvendy (Eds.), Human Inter-
face and the Management of Information, Part I. XXII,
1030 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part I1. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IT1. XXI. 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4549: J. Aspnes, C. Scheideler, A. Arora, S. Madden
(Eds.), Distributed Computing in Sensor Systems. XIII,
417 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007. (Sublibrary LNAI).

Vol. 4547: C. Carlet. B. Sunar (Eds.), Arithmetic of Finite
Fields. XI, 355 pages. 2007.

Vol. 4546: J. Kleijn, A. Yakovlev (Eds.), Petri Nets and
Other Models of Concurrency — ICATPN 2007. XI, 515
pages. 2007.

Vol. 4545: H. Anai, K. Horimoto, T. Kutsia (Eds.), Alge-
braic Biology. XIII, 379 pages. 2007.

Vol. 4544: S. Cohen-Boulakia, V. Tannen (Eds.), Data
Integration in the Life Sciences. XI, 282 pages. 2007.
(Sublibrary LNBI).

Vol. 4543: A.K. Bandara, M. Burgess (Eds.), Inter-
Domain Management. XII, 237 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.). Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4541: T. Okadome. T. Yamazaki, M. Makhtari
(Eds.), Pervasive Computing for Quality of Life En-
hancement. IX, 248 pages. 2007.

Foreword

On a recent visit to Sweden I had the pleasure of traveling by train between Stockholm
and Malmoé over several segments that spanned a few days. The trains always ran on time
and were very comfortable. Particularly convenient was the fact that a passenger could
get on the Internet during the trip simply by using her ticket number as the access code.
One of the features on the on-line provider’s home page was a map of that area of Swe-
den, with the train’s current location updated in real-time. Impressed by this, I made a
point of mentioning it to my Swedish host, and the conversation quickly turned to how
much today’s systems, such as my train, rely on and are controlled by software.

My host subsequently relayed a somewhat less pleasant experience with the same
type of train on which I had just arrived. During one of his recent trips, the software
controlling the angle at which one of the train’s cars entered and exited curves was not
functioning properly. As a result, the G-force experienced by the passengers during
turns had almost doubled. The problem was fixed at the next station, where the train
sat idle for some time while it literally rebooted. I found myself having two reactions
to this story. As a traveler, my first thought was that it is a good thing we do not have
to reboot airplanes in mid-flight. As a software engineer, I wondered exactly how the
software was constructed and what caused this particular problem.

As this story illustrates, as “regular” people we constantly depend on software in
our daily lives, yet frequently do not realize it and rarely, if ever, stop to analyze the
implications of that dependence and the extent of the software’s actual dependability.
On the other hand, as software engineering professionals, we are not only becoming
increasingly aware of the importance of software dependability, but have amassed an
arsenal of techniques and tools to help us ensure it. Many of these techniques and
tools have traditionally been used to ensure dependability in existing systems “after
the fact,” that is, after the system has been designed, and possibly implemented and
even deployed. However, a new class of emerging techniques gives dependability
first-class status in the development of software-intensive systems by integrating de-
pendability into software engineering processes from their inception. These techniques
rely on a software system’s architecture as the principal driver of dependability.

This book is the fourth in a series of collected papers on software architecture-
based dependability solutions. The book addresses a number of on-going challenges
(such as system modeling and analysis for dependability and ensuring dependability in
distributed systems) as well as some timely issues (such as the role of the Architecture
Analysis and Design Language—AADL—standard in modeling dependable systems,
architecture-driven dependability in the automotive domain, and the benefits of fol-
lowing the model-driven architecture paradigm in ensuring software dependability).
This book joins its three companion volumes in forming an indispensable source for
the fast-growing community of software researchers and practitioners who are con-
fronting the challenges posed by this important topic and architecting the software
systems on which we rely every day.

Nenad Medvidovic
University of Southern California

Preface

This is the fourth book in a series on Architecting Dependable Systems we started
five years ago that brings together issues related to software architectures and the
dependability of systems. This book includes expanded and peer-reviewed papers
based on the selected contributions to the Workshop on Architecting Dependable
Systems (WADS), organized at the 2006 International Conference on Dependable
Systems and Networks (DSN 2006), and a number of invited papers written by recog-
nized experts in the area.

Identification of the system structure (i.e., architecture) early in its development
process makes it easier for the developers to make crucial decisions about system
properties and to justify them before moving to the design or implementation stages.
Moreover, the architectural level views support abstracting away from details of the
system, thus facilitating the understanding of broader system concerns. One of the
benefits of a well-structured system is the reduction of its overall complexity, which
in turn leads to a more dependable system that typically has fewer remaining faults
and is capable of dealing with errors and faults of different types in a well-defined,
cost-effective and disciplined way.

System dependability is defined as the reliance that can be justifiably placed on the
service delivered by the system. It has become an essential aspect of computer sys-
tems as everyday life increasingly depends on software. It is therefore a matter for
concern that dependability issues are usually left until too late in the process of sys-
tem development.

Making decisions and reasoning about structure happen at different levels of ab-
straction throughout the software development cycle. Reasoning about dependability
at the architectural level has recently been in the focus of researchers and practitioners
because of the complexity of emerging applications. From the perspective of software
engineering, traditionally striving to build software systems that are fault-free, archi-
tectural consideration of dependability requires the acceptance of the fact that system
models need to reflect that it is impossible to avoid or foresee all faults. This requires
novel notations, methods and techniques providing the necessary support for reason-
ing about faults (including fault avoidance, fault tolerance, fault removal and fault
forecasting) at the architectural level.

This book comes as a result of bringing together research communities of software
architectures and dependability, and addresses issues that are currently relevant to im-
proving the state of the art in architecting dependable systems. The book consists of four
parts: Architectural Description Languages, Architectural Components and Patterns,
Architecting Distributed Systems, and Architectural Assurances for Dependability.

The first part entitled “Architectural Description Languages” (ADLs) includes four
papers focusing on various aspects of defining and using ADLs with an aim to ensure
system dependability. The first paper of this part, “Architecting Dependable Systems
with the SAE Architecture Analysis and Description Language (AADL),” is prepared
by J. Tokar. The Avionics Systems Division of the Society of Automotive Engineers
(SAE) has recently adopted this language to support incorporation of formal methods

VIII Preface

and engineering models into analysis of software and system architectures. The SAE
AADL is a standard that has been specifically developed for embedded real-time
safety critical systems. It supports the use of various formal approaches to analyzing
the impact of system composition from hardware and software components and al-
lows the generation of system glue code with the performance qualities predicted. The
paper highlights features of AADL that facilitate the development of system architec-
tures and demonstrates how the features can be used to conduct a wide variety of
dependability analysis of the AADL architectural models. To help in the understand-
ing of AADL, the paper begins with a discussion of software and systems architecture
and then shows how the AADL supports these concepts.

The second paper, written by A.-E. Rugina, K. Kanoun and M. Kaaniche and enti-
tled “A System Dependability Modeling Framework using AADL and GSPNs,” de-
scribes a modeling framework that generates dependability-oriented analytical models
from Architecture Analysis and Design Language (AADL) specifications, which are
then used for evaluating dependability measures, such as reliability or availability.
The proposed stepwise approach transforms an AADL dependability model into a
Generalized Stochastic Petri Net (GSPN) by applying model transformation rules that
can be automated and then processed by existing tools.

P. Cuenot, D. Chen, S. Gérard, H. Lonn, M.-O. Reiser, D. Servat, R. T. Kolagari,
M. Torngren and M. Weber contribute to the book with the paper “Towards Improv-
ing Dependability of Automotive Systems by Using the EAST-ADL Architecture
Description Language.” Management of engineering information is critical for devel-
oping modern embedded automotive systems. Development time, cost efficiency,
quality and dependability all benefit from appropriate information management. Sys-
tem modeling based on an architecture description language is a way to keep this
information in one information structure. EAST-ADL is an architecture description
language for automotive embedded systems. It is currently refined in the ATESST
project. The focus of this paper is on describing how dependability is addressed in the
EAST-ADL. The engineering process defined in the EASIS project is used as an
example illustrating support for engineering processes in EAST-ADL.

The final paper of the first part is “The View Glue” written by A. Radjenovic and
R. Paige. It focuses on domain-specific architecture description languages (ADLs),
particularly for safety critical systems. In this paper, the authors outline the require-
ments for safety critical ADLSs, the challenges faced in their construction, and present
an example — AIM — developed in collaboration with the safety industry. Explaining
the key principles of AIM, the authors show how to address multiple and cross-
cutting concerns through active system views and how to ensure consistency across
such views. The AIM philosophy is supported by a brief exploration of a real-life jet
engine case study.

The second part of this book is entitled “Architectural Components and Patterns”
and contains five papers. In the first paper, entitled “A Component-Based Approach
to Verification and Validation of Formal Software Models,” D. Desovski and B.
Cukic present a methodology for the automated decomposition and abstraction of
Software Cost Reduction (SCR) specifications. The approach enables one to identify
components in an SCR specification, perform the verification component by compo-
nent, and apply compositional verification methods. It is shown that the algorithms
can be used in large specifications.

Preface IX

In the paper “A Pattern-Based Approach for Modeling and Analyzing Error Re-
covery,” A. Ebnenasir and B. H. C. Cheng present an object analysis pattern, called
the corrector pattern, that provides a generic reusable strategy for modeling error
recovery requirements in the presence of faults. In addition to templates for construct-
ing structural and behavioral models of recovery requirements, the corrector pattern
also contains templates for specifying properties that can be formally verified to en-
sure the consistency between recovery and functional requirements. Additional prop-
erty templates can be instantiated and verified to ensure the fault-tolerance of the
system to which the corrector pattern has been applied. This analysis method is vali-
dated in terms of UML diagrams and demonstrated in the context of an industrial
automotive application.

The third paper of this part, “Architectural Fault Tolerance Using Exception Han-
dling,” is written by R. de Lemos. This paper presents an architectural abstraction
based on exception handling for structuring fault-tolerant software systems. The pro-
posed architectural abstraction transforms untrusted software components into ideal-
ized fault-tolerant architectural elements (iFTE), which clearly separate the normal
and exceptional behaviors, in terms of their internal structure and interfaces. The
feasibility of the proposed approach is evaluated in terms of a simple case study.

R. Buskens and O. Gonzalez contribute to the book with the paper “Model-Centric
Development of Highly Available Software Systems.” They present the Aurora Man-
agement Workbench (AMW) as a solution to the problem of integration a high avail-
ability (HA) middleware with the system that uses it. AMW is an HA middleware and
a set of tools for building highly available distributed software systems. It is unique
in its approach to developing highly available systems: developers focus only on
describing key architectural abstractions of their system as well as system HA needs
in the form of a model. Tools then use the model to generate much of the code needed
to integrate the system with the AMW HA middleware, which also uses the model to
coordinate and control HA services at run-time. The paper discusses initial successes
using the approach proposed in developing commercial telecom systems.

The final paper of this part, written by L. Grunske, P. Lindsay, E. Bondarev, Y. Pa-
padopoulos and D. Parker and entitled “An Outline of an Architecture-Based Method
for Optimizing Dependability Attributes of Software-Intensive Systems,” provides an
overview of 14 different approaches for optimizing the architectural design of systems
with regard to dependability attributes and cost. As a result of this study, the authors
present a meta-method that specifies the process of designing and optimizing architec-
tures with contradicting requirements on multiple quality attributes.

Part three of the book is on “Architecting Distributed Systems” and includes six
papers focusing on approaches to architectural level reasoning about dependability
concerns of distributed systems. This part starts with a paper by P. Inverardi and L.
Mostarda that is entitled “A Distributed Monitoring System for Enhancing Security
and Dependability at an Architectural Level.” The paper presents the DESERT tool
that allows the automatic generation of distributed monitoring systems for enhancing
security and dependability of a component-based application at the architectural level.
The DESERT language permits one to specify both the component interfaces and
interaction properties in terms of correct component communications. DESERT uses
these specifications to generate one filter for each component. Each filter locally
detects when its component communications violate the property and can undertake a
set of reaction policies.

X Preface

In their paper, entitled “Architecting Dynamic Reconfiguration in Dependable Sys-
tems,” A. T. A. Gomes, T. V. Batista, A. Joolia and G. Coulson introduce a generic
approach to supporting dynamic reconfiguration in dependable systems. The proposed
approach is built on the authors’ view that dynamic reconfiguration in such systems
needs to be causally connected at runtime to a corresponding high-level software
architecture specification. More specifically, two causally connected models are de-
fined, an architecture-level model and a runtime-level model. Dynamic reconfigura-
tion is applied either through an architecture specification at the architectural level, or
through reconfiguration primitives at the runtime level. This approach supports both
foreseen and unforeseen reconfigurations—these are handled at both levels with a
well-defined mapping between them.

T. Dumitrag, D. Rosu, A. Dan and P. Narasimhan, in their paper “Ecotopia: An
Ecological Framework for Change Management in Distributed Systems,” present
Ecotopia, a framework for change management in complex service-oriented architec-
tures (SOA) that is ecological in its intent: it schedules change operations with the
goal of minimizing the service-delivery disruptions by accounting for their impact on
the SOA environment. Ecotopia handles both external change requests, such as soft-
ware upgrades, and internal changes requests, such as fault-recovery actions. The
authors evaluate the Ecotopia framework using two realistic change-management
scenarios in distributed enterprise systems.

In the fourth paper, entitled “Generic-Events Architecture: Integrating Real-World
Aspects in Event-Based Systems,” A. Casimiro, J. Kaiser, and P. Verissimo describe
an architectural solution consisting of an object model environment, which can be
easily composed, representing software/hardware entities capable of interacting with
the environment, and an event model that allows one to integrate real-world events
and events generated in the system. The architectural solution and the event-model
permit one to compose large applications from basic components, following a hierar-
chical composition approach.

The fifth paper is by C. Heller, J. Schalk, S. Schneele, M. Sorea, and S. Voss and is
entitled “Flexible Communication Architecture for Dependable Time-Triggered Sys-
tems.” The authors propose an approach expressed in terms of a dependable and flexi-
ble communication architecture that supports flexibility in the use of time-triggered
technologies and delivers a highly effective, reliable and dependable system design.
This work is undertaken in the context of safety-critical aerospace applications.

The final paper of this part is by L. Baresi, S. Guinea, and M. Plebani and is enti-
tled “Business Process Monitoring for Dependability.” This paper proposes a dynamic
technique for ensuring that dependability requirements of service-based business
processes are maintained during runtime. The approach is based upon the concept of
supervision rules, which are the union of user-defined constraints. These rules are
used to monitor how a BPEL process evolves, and specify corrective actions that must
be executed when a set of constraints is violated. For facilitating the specification of
these rules, the authors provide suitable languages and tools that enable one to ab-
stract from the underlying technologies, and to hide how the system guarantees the
dependability requirements.

The fourth part of this book is on “Architectural Assurances for Dependability”
and contains three papers. The first paper, “Achieving Dependable Systems by Syner-
gistic Development of Architectures and Assurance Cases” by P. J. Graydon, J. C.

Preface X1

Knight and E. A. Strunk, explains the basic principles of assurance-based develop-
ment, and shows how the proposed approach can be used to provide assurance case
goals for architectural choices. In this approach, first the architecture is developed to
provide evidence required in the assurance case, and then the assurance case is refined
as architectural choices are made. In this context, choices are better informed than an
architecture chosen in an ad hoc manner.

The next paper, entitled “Towards Evidence-Based Architectural Design for
Safety-Critical Software Applications,” is prepared by W. Wu and T. Kelly. This
paper proposes a Triple Peaks process framework, within which a system model,
deviation model, and mitigation model are proposed and linked together. The applica-
tion of this framework is supported by the use of Bayesian Belief Networks and colla-
tion of relevant evidence. The link between the three models is elaborated by means
of a case study. The core contribution of this paper is addressing safety using evi-
dence available at the architectural level.

The paper “Extending Failure Modes and Effects Analysis Approach for Reliabil-
ity Analysis at the Software Architecture Design Level,” by H. Sozer, B. Tekiner-
dogan and M. Aksit, shows how the Failure Mode and Effect Analysis (FMEA) and
Fault Tree Analysis (FTA) can be extended and used in combination for conducting
reliability evaluation of software systems at the architecture design level. The exten-
sions of FMEA and FTA are related to using a failure domain model for systematic
derivation of failures, prioritization of failure scenarios based on a user’s perception,
and an FTA impact analysis model that does not explicitly require a running system.
The software architecture reliability analysis approach (SARAH) proposed in the
paper is illustrated using an industrial case for analyzing the reliability of the software
architecture of a digital TV.

Architecting dependable systems is now a well-recognized area, attracting interest
and contributions from many researchers. We are certain that this book will prove
valuable for both developers designing complex applications and researchers building
techniques supporting them. We are grateful to many people who made this book
possible. Our thanks go to the authors of the contributions for their excellent work,
the DSN 2006 WADS participants for their active participation in the discussions, and
Alfred Hofmann from Springer for believing in the idea of a series of books on this
important topic and for helping us to get it published. Last but not least, we very
much appreciate the efforts of our reviewers who helped us in ensuring the high qual-
ity of the contributions. They are L. Baresi, L. Bass, T. V. Batista, J. Bryans, R.
Buskens, F. Castor Filho, B. H.C. Cheng, A. C. Costa, B. Cukic, D. Desovski, T.
Dumitras, J. Durdes, A. Ebnenasir, L. Grunske, C. Heller, N. Henderson, M.
Kaéniche, K. Kanoun, T. Kelly, S. Kharchenko, M. Klein, H. Lonn, T. Maxino, L.
Mostarda, P. Narasimhan, R. F. Paige, P. Pelliccione, A. Radjenovic, S. Riddle, G.
Rodrigues, D. Rosu, A.-E. Rugina, S. Schneele, E. Strunk, B. Tekinerdogan, M.
Tichy, J. L. Tokar, S. Voss and several anonymous reviewers.

Rogério de Lemos
Cristina Gacek
Alexander Romanovsky

Table of Contents

Part 1. Architectural Description Languages

Architecting Dependable Systems with the SAE Architecture Analysis
and Description Language (AADL)
Joyce L. Tokar

A System Dependability Modeling Framework Using AADL and
CBIPING . s ¢ o 5 1 o o sm 5 e e 5 5 s 68 s BB B e ¥ G B S S B S T e
Ana-FElena Rugina, Karama Kanoun, and Mohamed Kaaniche

Towards Improving Dependability of Automotive Systems by Using the

EAST-ADL Architecture Description Language
Philippe Cuenot, DeJiu Chen, Sébastien Gérard, Henrik Lonn,
Mark-Oliver Reiser, David Servat, Ramin Tavakoli Kolagari,
Martin Torngren, and Matthias Weber

The View Glueo e e e
Alek Radjenovic and Richard Paige

Part 2. Architectural Components and Patterns

A Component-Based Approach to Verification and Validation of Formal
Software Models
Dejan Desovski and Bojan Cukic

A Pattern-Based Approach for Modeling and Analyzing Error
ReCOVETY . . oo
Ali Ebnenasir and Betty H.C. Cheng

Architectural Fault Tolerance Using Exception Handling
Rogério de Lemos

Model-Centric Development of Highly Available Software Systems.
Rick Buskens and Oscar Gonzalez

An Outline of an Architecture-Based Method for Optimizing
Dependability Attributes of Software-Intensive Systems
Lars Grunske, Peter Lindsay, Egor Bondarev,
Yiannis Papadopoulos, and David Parker

14

39

66

89

X1V Table of Contents

Part 3. Architecting Distributed Systems

A Distributed Monitoring System for Enhancing Security and
Dependability at Architectural Level 210
Paola Inverardi and Leonardo Mostarda

Architecting Dynamic Reconfiguration in Dependable Systems 237
Anténio Tadeu A. Gomes, Thais V. Batista, Ackbar Joolia, and
Geoff Coulson

Ecotopia: An Ecological Framework for Change Management in
Distributed Systemso 262
Tudor Dumitras, Daniela Rosu, Asit Dan, and Priya Narasimhan

Generic-Events Architecture: Integrating Real-World Aspects in
Event-Bagsed SyStems ¢ v surms smsmpspiumsns sy iwsmmssssmoms 555 287
Antonio Casimiro, Jorg Kaiser, and Paulo Verissimo

Flexible Communication Architecture for Dependable Time-Triggered

YOOI, 5 655555105 55 5 05 605 00 i 5 E R 805w ou 8 0 o m o 0 9 s s 0 e g 8 316
Christoph Heller, Josef Schalk, Stefan Schneele, Maria Sorea, and
Sebastian Voss

Business Process Monitoring for Dependability 337
Luciano Baresi, Sam Guinea, and Marco Plebani

Part 4. Architectural Assurances for Dependability

Achieving Dependable Systems by Symnergistic Development of
Architectures and Assurance Cases i, 362
Patrick J. Graydon, John C. Knight, and Elisabeth A. Strunk

Towards Evidence-Based Architectural Design for Safety-Critical
Software Applications 383
Weihang Wu and Tim Kelly

Extending Failure Modes and Effects Analysis Approach for Reliability
Analysis at the Software Architecture Design Level 409
Hasan Sozer, Bedir Tekinerdogan, and Mehmet Aksit

Author Index 435

Architecting Dependable Systems with the SAE
Architecture Analysis and Description Language (AADL)

Joyce L. Tokar

Pyrrhus Software,
P.O. Box 1352, Phoenix, AZ 85001, USA
tokar@pyrrhusoft.com

Abstract. Architecture Description Languages provide significant opportunity
for the incorporation of formal methods and engineering models into the
analysis of software and system architectures. The SAE AADL [1] is a standard
that has been developed for embedded real-time safety critical systems which
will support the use of various formal approaches to analyze the impact of the
composition of systems from hardware and software and which will allow the
generation of system glue code with the performance qualities predicted. This
paper will highlight the components and features of AADL that facilitate the
development of system architectures comprised of both hardware and software
components. It will demonstrate how the features of AADL may be used to
conduct a wide variety of dependability analysis on AADL architectural
models. To help in the understanding of AADL the paper will begin with a
discussion of software and systems architecture. It will then show how the
AADL supports these concepts.

Keywords: Architecture description language, Architecture analysis,
Dependability, Modeling.

1 Introduction

An architecture involves multiple views (perspectives) of the system [3] and relies, in
whole or part, on patterns or styles of representation. These views enable the
exchange of information about a system or system of systems (SOS) across a wide
variety of domains of discourse. For example, a logical view of an architecture
describes the logical relationships between various components of a system that may
be used to assess the logical flow of information through a system. Whereas a
physical view of an architecture describes how the architecture is realized in the
physical environment.

Architecture is embodied in its components, both hardware and software; their
relationships to each other and the environment; and the principles governing its
design and evolution. The architecture of a program or computing system is the
structure or structures of the system, which comprise software and hardware elements,
the externally visible properties of those elements, and the relationships among them.

Thus, architecture helps to organize a system into components and interfaces
between these components. There are both functional and nonfunctional

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 1-13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J.L. Tokar

characteristics that can be modeled as properties of a component or system. These
properties along with the model itself can then be used in analysis of the system.

1.1 Architecture: The Foundation of Good Software and Systems Engineering

Research in Architecture Description Languages (ADLs) has been focused on finding
methods to reduce the cost of developing applications and for increasing the potential
for commonality between different members of a closely related product family.
Software development based on common architectural idioms has shifted from the
lines-of-code view to coarser-grained architectural elements and their overall
interconnection structure [4]. To support architecture-based development, formal
modeling notations, analysis and development tools that operate on architectural
specifications are needed. Architecture description languages and their accompanying
toolsets have been proposed as the answer. An ADL for software applications focuses
on the high-level structure of the overall application rather than the implementation
details of any specific source module.

The AADL is an architecture descriptions language that includes support for the
development of both the execution platform components and the software components
in the system architectural specification. Thus, the characteristics of both the software
and the execution platform are available for analysis.

AADL is based upon the ground-breaking work in architecture description
languages funded by United States (US) Defense Advanced Research Projects
Agency (DARPA) and the US Army Aviation and Missile Command (AMCM).
Experiences from the use of the MetaH language and toolset developed my
Honeywell Technology Laboratories [4] provided the foundation for the definition
and development of the AADL.

1.2 Software and Systems Development with Modeling Languages

With modeling languages the approach to software and systems development is more
integrated with the variety of participants from domains across the entire operational
embedded system. The architecture model may be refined from the requirements
phase through development into integration. This enables the detection of errors early
in the process rather than at integration level. Functional interfaces and systems
interface are integrated into the overall model development which provides a
predictable system at the completion of development.

Analysis of the architecture may take place throughout the development cycle.
Preliminary abstract models may be analyzed for feasibility prior to actual system
construction. These models may also be used to evaluate interfaces and design
constraints. Model analysis facilitates the early detection of errors and flaws in a system.

2 The SAE Architecture Analysis and Description Language
(AADL)

A key to an AADL-based engineering process is an architectural specification that is
an abstraction of the system. The architectural specification must be semantically
strong enough to reflect relevant aspects of the application domain.

Architecting Dependable Systems with the SAE AADL 3

Since the AADL was designed for real-time embedded system, the architectural
specification focuses on the task structure and interaction topology of a system and
captures both the software architecture and hardware architecture. This real-time
architecture model is the basis for various analyses, ranging from schedulability
analysis to reliability and safety analysis.

The architectural specification is the basis for automated system generation and
component integration. The actual components of a system may be hand-coded
software, or components modeled in a domain-specific notation and auto-generated.

Although there is a considerable diversity in the capabilities of different ADLs, all
share a similar conceptual basis, or ontology, that determines a common foundation of
concepts and concerns for architectural description [S]. The main elements of this
ontology include: components, connectors, systems, properties, constraints and styles.

2.1 The Elements of AADL

This section shows the correspondence between this ontology and AADL elements.
These AADL entities are used to construct analyzable models of real-time, embedded,
systems.

2.1.1 Components

Components represent the primary (computational) elements and data stores of a
system. Intuitively, they correspond to the boxes in box-and-line descriptions of
architectures. Typical examples of components include such things as clients, servers,
filters, objects, blackboards, and databases. In most ADLs components may have
multiple interfaces, each interface defining a point of interaction between a
component and its environment.

In AADL, the definition of components is extended to include execution platform
components such as buses and memories. A system is then the composition of
software components, execution platform components, and possibly other system
components. AADL supports multiple interfaces between components through the
definition of ports. AADL also supports the concept of a family of components
through the definition of multiple implementations that correspond to a component
type definition.

2.1.2 Connectors

Connectors facilitate the communication channels between components and
coordinate activities among components. Examples include simple forms of
interaction, such as pipes, procedure call, and event broadcast. Connectors may also
represent more complex interactions, such as client-server protocol or an SQL link
between a database and an application. Connectors have interfaces that define the
roles played by the various participants in the interaction represented by the
connector.

In AADL, connections are represented as the actual linkage between components.
Ports may be used to represent the flow of data and events between threads and
execution platform components. Data ports are used for unqueued state data. Event
data ports are used for queued message data. Event ports are used for events. A port
group represents a grouping of ports or port groups. Outside a component a port

