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PREFACE TO THE THIRD EDITION

In the preparatlon of the thu'd edition of this book a con-
slderable ‘number of new problems were added, and answers.
to many of the old problems inserted. The book was expanded -
by the addition of two new chapters, namely, Chapter VIII
which deals with bending of beams .in a plane which is not a -
plane of symmetry, and. Chapter XII on the bending of curved

“bars. In Chaptcr VIII the notion of shear center, which is of
‘great practlcal xmporum@e in the case of thin walled struc-

tures, is introduced. In Chapter XII is presented the mate-
rial on curved bars which previously appeared in the second
volume of this book. “That: material has been entirely rewrit-
ten and new material added. It is hoped with these major

~ changes, as well as the innumerable minor changes. through-

out the entire text, that the volume will be not only. more

~ complete, but also more satxsfactory as a textbook in elemen-

tary courses in strength of materials. ' The author wishes to
thank Professor James M. Gere. of Stanford University, who

'ass1sted in remsmg the volume and in reading the proofs.

S TIMOSHENKO

Snx’rom t}mmsmr
March 25, 1955




PREFACE TO THE SECOND EDITION

In preparing the second edition of this volume, an effort
has been made to adapt the book to the teaching requirements
of our engmeermg schools. .

With this in view, a portion of the material of a more
advanced character which was contained in the previous edi-
tion of this volume has been removed and will be included in

the new edition of the second volume. At the same time, -

some portions of the book, which were only briefly discussed
in the first edition, have been expanded with the intention of
making the book easier to read for the beginner. For this

reason, chapter 1I, dealing with combined stresses, has been

entirely rewritten. Also, the portion of the book dealing with

shearing force and bending moment diagrams has been ex-.
‘panded, and a considerable amount of material has been added

to the discussion of deflection curves by the integration
method. A discussion of column theory and its application
has been included in chapter VIII, since this subject is usually
required in undergraduate courses of strength of materials.
Several additions have been made to chapter X dealing with
the application of strain energy methods to the solution of
statically indetermined pfoblems. In various parts of the

book there are many new problems which may be useful for’

class and home work.
Several changes in the notations have been made to con-

form to the requirements of American Standard Symbols for
Mechanics of Solid Bodies recently adopted by The American
Society of Mechanical Engineers.

It is hoped that with the changes made the book will bhe

found more satisfactory for teaching the undergraduate

course of strength of materials and that it will furnish a better
foundation for the study of the more advanced material

discussed in the second volume.
’ S. TIMOSHENKO

Paro Arro, CALIFORNIA
Juane 13, 1940



PREFACE TO THE FIRST EDITION

At the present time, a decided change is taking place in

the attitude of designers towards the application of analytical
methods in the solution of engineering problems. Design is
no longer based principally upon empirical formulas. . The im-.
portance of analytical methods combined with laboratory
experiments in the solution of technical problems is becoming
generdlly aceepted.
" Types of machines:and structures are changlng very rap-
idly, especxally in the new fields of industry, and usually time
does not permit the accumulation of the necessary empirical
data. ' The size and cost of structures are constantly increas-
ing, which consequentiy creates a severe demand for greater
~ reliability in structures. The economical factor in design
under the present conditions of competition is becoming of
growing importance. The construction must be sufficienty
strong and ‘reliable, and yet it must be designed with the
greatest possible saving in material. Under such conditions,
the problem of a designer becomes extremely difficult. Re-
duction in weight involves an incréase in working stresses,
which can be safely allowed only on a basis of careful analysis
of stress distribution in the structure and experimental investi-
gation of the mechamcal properties of the materials em-
ployed.

It is the aim of thls book to present problems such that the
student’s attention will be focussed on the practical apphca—
tions of the subject. If this is attained, and results, in some
measure, in increased correlation between the studies of
strength of materials and engineering design, an impottant
forward step will have been made.

The book is divided into two volumes. The first volume
contains principally material which is usually covered in
required courses of strength of materials in our engineering

v




vi. PREFACE TO THE FIRST EDITION

schools. The more advanced port:ons of the subject are of
interest chiefly to graduate students and research engineers,
and are incorporated in the second volume of the book. This
contains also the new developments of pracuca.l lmportanec in
the field of strength of materials. . . -

~In wntmg the first volume of strength of matena.ls atten-
tion "was given to simplifying. all derivations as. much ‘as
possgble so that a student with: the usual preparation in math-
ematics will be able to read it without difficulty.- - For example;
in deriving the theory of the deflection, curve, the area moment
method was extensively used. - In this | mannet; considerable
simplification was made in denvmg the deflections of beams for
various. loading. and: supportmg ¢onditions, In: dmcusmg _
statxcaliy indeterminate systems; the me:ixod of superpasition -
wis: apphed, which: proves very useful in treating such problems
as continuous beams -and frames..” For explaining combined
stresses and deriving principal stresses, use was made of the
Mohr’s cirele, which represents a substantial s;mphﬁca-aqn in
the presentatxon of this portion of the theory."

Using'these methods of: slmphfymg the preseneauén the :
author was able to condensé thie material and to discuss.same
problems of a more advanced .character.  For example, in
dzscussmg torsion, the twist of rectangular bars and of rolled
sections, such as afigles, channels, and I beams, is considered.
The deformation and stress in helical springs are discussed in
detail. - In the theery of bending, the case of non-symmetrical
cross sections is discussed, the center of twist is defined and
explamed, and the effect of shearing force on the deflection of
beams is considered. The general theory of -the. bending of

.beams, the materials of which do not follow Hooke’s law, is

given and is apphed in the bending of beamsbeyond the yieldmg .
point. The bending of rcmforced concrete beams is given
consideration. - In’ dlscussmg combinations of direct and bend—
ing stress, the effect of deflections on the bending moment is
considered; and the limitation of the methed of superposmon
"~ is explained. In treating -combined bending and torsion,
the cases of rectangular and clhpucal cross sections are dis-



PREFACE TO THE FIRST EDITION. vii

cussed, and applicationé in the ‘design of crankshafts are
given. Considerable space in the book is devoted to methods
for solving elasticity problems based on the consideration of

"~ the strain energy of elastic bodies. These methods are ap-

~ plied in discussing statically indeterminate systems. The
stresses produced by impact are also discussed. All these
problems of a more advanced character are printed in small
type, and may be omitted during the first reading of the book.
The book is illustrated with a number of problems to
which solutions are presented. . In many-cases, the problems
are chosen so as to widen the field covered by the text and to
illustrate the application of the theory in the solution of design
problems. It is hoped that these problems will be of interest
for teaching purposes, and also useful for designers. -
| The author takes this opportunity of thanking his frien
* who have assisted him by suggestions, reading of manuscript
. and proofs, particularly Messrs. W. M. Coates and L. H.
- Donnell, teachers of mathematics and mechanics in the
Engineeting College of the University of Michigan, and Mr.
~ F. L. Everett of the Department of Efgineering Research
" of the University of Michigan. He is indebted also to Mr.
F. C. Wilharm for the preparation of drawings, to Mrs. E. D.

"' Webster for the typing of the manuscript, ard to the Van

* Nostrand Company for its care in the publication of the book.

S. TIMOSHENKO
ANN ArBOR, MICHIGAN
May 1, 1930
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NOTATION s

Angle, coeﬁicxem: of thermal expansnon, numeri-
cal coefficient

. Angle, nymerical coeﬁiczent

Shearing strain, weight per unit volume

Unit volume expansion, distance

Total elongat;on, total deﬂectlon, distance

Unit strain

Unit strains in #, y and 2z directions

Anglé, angle of twist per unit 1ength of shaft

" Poisson’s ratio .

Unit normal stress ,

. Prineipal stresses v

Unit normal stress on plang perpcndxcular to the
direction n

.- Unit normal stresses on planes perpendxcular to
the x, y and 2 axes

Ultimate stress

Working stress

Yield point stress

Unit shear stress _

Unit shear stresses on planes perpendicular to
the x, y and z axes, and parallel to the y, z
and x axes ,

Working stress in shear

Yield point stress.in shear

Angle

-Angular velocity

Cross sectional area

Distances

Torsional rigidity, constant of integration

Diameters ' '

Modulus of elasticity

ix



, NOTATIONS

Modulus of elasticity in shear

Horizontal force, horsepower

Height, thickness .

. Polar moment of inertia of a plane area

Moments of inertia of a plane area wu;h respect-
totheyandzaxes ' -

Product of ineftia of a plane area with respect .
to the y and z axes ' :

Bulk modulus of elasticity _

Spring constant, numerical factor . :

Radii of gyration of a plane area with respect to
the y and z axes :

". Leéngth, span

Bending moment

Torque

Factor of - safety, revolutions per minute, normal

~ toa’plane , ’

Concentrated forces =

Pressare, steel - ratio for remforced concretc
beams

Load per unit length pressure

Reaction, force, radius: -~ -

Radius, radius of curvat‘tire ‘

Axial forcein a bar

Deflection, distance

Volume, shearing force A

Velocity, deflection, distance

"Total load, weight A

Weight per unit length stram energy per unit
. volume .

Strain energy per unit weight

Axial forces in bars, unknown reactions

. Rectangular coordinates

Section modulus
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. external forées

. .xgal_ Shgl?ewddunng Stz

* strain which was accumilated in' |

m&oﬂ m camxsszom wrmm m msm: an'
1 Elﬂﬁcﬂy-—AA material body consists ‘of small paruclw, ?
or molecules, beﬁnen which' fortes ite acting. These molecu-
lar forces resist: tfle: change‘im the' ‘shiape of the ‘body which -
end to gmducé, Unﬂcr the actmn of e.fternal ,

forces me AT ‘4“ . A T ey ‘ . A ,;‘

extemalandftunaﬁfdfc& “Thgqu‘gmﬂténma:tateof

strain. During’ defdrination’ fie ‘exteérnal forces dcting ‘upon
’ ‘ m%%brkﬁ tran,sfdmed éampletely orj

dcformiﬂg(;n '} f the body are now:_'-"f" B
E‘T‘duany ';‘ o

deformation dlepotwuai energy of 1 | i x- |

the bodymayberecoveredin tﬁe PR NN A
formofextemalmtk. S l,," L

Coxmder for i 1mtance,apmmap @
tic bar loaded at the end as shown S Fo.l.

" in Fig. 1" Under the action of this

load a certain eloiigation of the Bar wiﬂ take plaCe The pomt v
of application of the load will then move in a4 downward direc-
tion and ‘positive work will-be done by . the load during this'
* 1]t is assumed that the load is act:nga.longthemsofthebnr le., along- '

the line passmg through the centroids of the cross sections.
1




2 ' STRENGTH OF MATERIALS

motion. When the load is diminished, the elongation of the
bar diminishes also, the loaded end of the bar moves upward
and the potentla.l energy of strain will be transformed into the
work of moving the load in the upward direction.

The property by which a body returns to its original shape
after removal of the load'is called easticity. The body is per-
Jectly elastic if it recovers its ariginal shape completely after
unloading; it is pamall_y ela.s;ttc if, the dcformanon produced by
the. external forces does not d;sappear completely after un-
loading. In the case of a perfectly elastic body the wotk done
by the external forces dunng dcfoxmaﬁon s compietely trans-
‘formed into potentxal energy of strain,2 Ig the case of 4 par-
tially elastic body, part:of the work done by the extemal
forces during deformation is. dxssxpated in the form of heat,
which is developed in the body during the non-elashc deforma-
tion, Expcnments show. ‘.:hav:c such. structgral matenals as
steel, wood and stone may be cpnsndered as perfect.ly elastic
within certain-limits;" dcpendﬁng upon the propernes of the
material. Assuming tb,at the external forces acting upon ‘the
structure are known, it is a fundamcntal problem for the de—
signer to establish the proportions of the members of the stfuc—
ture such that it*will appmach the condxtlon of 2 perfe ‘y
elastic bedy under all service. éQndltxons Only in fhzs way can
we be certain of ‘continuous reliable. service from’ the s’tﬁicﬂﬁre
and avoid any permanent set in its members '

2. Hooke’s Law.—By direct expenment with the extensfcm
of prismatic bars (Fig. 1) it has been' éstablished for many
structural materials that within certain hmxts the elonga,tron
of the bar is proportional to the tensxle force. This sitd; ple
linear relationship between the force and the elongatlon whith
it produces was first formulated by the English scientist Robert
Hooke * in 1678 and bears his name. Usmg the notatlon. '

P = force producmg extension of bar,
! = length of bar,

2 The small temperature changes wh:ch usually accompany elastzc defor-
mation and the corresponding heat exchange with the surrcundings are
neglected in this consideration (see Part II).

8 Robert Hooke, De Potentia restitutiva, London, 1678.




TENSION AND COMPRESSION 3

| A = cross-sectional area of bar,
3 = total elongation of bar,
E= dastlc constant of the material, called the Modulus

I

of Elasticity, - 5
Hooke’s expenmental law may be given by the followmg
equation:
3 Pl : M
T 4E

The elongatlon of the bar is proportlonal to the tensile force
and to the length of the bar and inversely proportional to the
cross-sectlonal area and to the modulus of eIastlcxty In mak-
ing tensile tests precautions are usually taken
to ensure central application of the- tensile
force. In Fig 2 is shown a method of ﬁxmg '
the ends of a circular tensile test specimen in
a tensile test machine. In this manner any
bending of the bar will be prevented. Ex-
cluding from consideration those portions of
the bar in-the vicinity of the applied forces, " P2
it may be assumed that durmg tension all

longitudinal fibers of the prismatic bar have the same elongatxon

and that cross sections of the bar originally plane and perpen-
dicular to the axis of the bar remain so after extension.

In dlscussmg the magnitude of internal forces let us imagine
the bar cut ifito two parts by a cross section m# and let us con-

' sider the equilibriuith of the lower portion of the bar (Fig. 12).

At the lower end of this portion the tensile force P is applied.

On the upper end the forces represent the action of the par-
ticles of the upper portion of the strained bar on the particles
of the lower portion. These forces are continuously distributed
over the cross section. Familiar examples of such a continuous
distribution of forces over a surface are hydrostatic pressure
and steam pressure. In handling such continuously distributed
forces the intensity of force, i.e., the force per unit ares, is of
great importance. In the present case of axial tension, in

4 The more complicated stress distribution near the points of application
of the forces is discussed in Part II.



4  'STRENGTH OF MATERIALS

which all fibers have the same elongation, the dxstnbutlon of
forces over the cross section mn will be uniform. The resultant
of these forces will pass through the centroid of the cross sec-
tion and will act along the axis of the bar... Taking into account
that the sum of these forc&s, from the condition of equilibrium
(Fig. lb), must be equal to P and denotitig the force per unit
of cross-sectional area by o, we obtam
p ,

This force per unit area is. called unit temzle Stress or snnply
stress. In this book, force is measured i in pouncls and’ area in
square inches, so that stress is measured in. pounds per sguaré
inch, - The elongatxon of the bar per unit. length is determmed

bv the eqmtton *‘8 :
and is called the unit ?Iongamm or the temsile strain. Hsmg
egs. (1),.(2) and (3), Hbok’e law may also'be written in th

®

[

followmgform AR

and we see that madulm of cla.rtzaty is agual b0 unit stress dmded

by unit strain and may be easily calculated provided the:stness
and corresp(mdmg unit elongatwn are fopnd from a tensile
test. . The unit elongation. ¢ is a pure number represemmg the

ratio of two.lengths (see eq. 3); therefore, from eq. (4) it may
be cancluded that. modulus of elasticity is.measured in the saime
units' as stress. o, i.e., in pounds per square inch. - Average ,

valuesof the modulus. £ for seva*al matenals are gwen in !he
first colimn of Table 1.5 . . :

- Egs. (1)~(4) may be used also i in the Case of' compression, of
pnsmat;c bars.. Then,# denotes the total longitudinal contrac-

twn, e the rompressive. strain and o the compre.mae .rtrw.

'More detaxls on the mechamcal properties of materials are gwen in
Part I1. :
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TENSION AND" COMPRESSION s

A Tux.s 1 Mzemmcu Pnornnxs or Mn’:mrgs _

Lo i

. B 1 Y‘xeld Point - Ultimate Strength
- Material 1b/in? Ib/in? " Ibfint
Structural carbon steel 0.15 B SR _ : -
t0 0.25% catbon. . ....... 30 X 10% | 30 X 10°-40 X 10° | 55 X 10%-65 X 10°
Nickel steel 3 to 3. 5% nickel 29 X 10° | 40 X 10%-50 X 10° | 78 X 162100 X 108
Dutdliminem..........00 w10 108 | 35 X 10%45 X 10° | .54 X 108-65.X 10*
Copper,coidmlled ......... 16108 |28 x 10840 X 10'
Gléss ................. 1ox1o“ R 35xm'
'Cancrete,mwnq:msxeu .4,>< 084 o ~3x ’10‘, N

For most structural matena.ls the mmduhis of elastlcwy for com-
prcssmh is the same ‘as for tension. In calculauons; tensile

stress anid tensile strain are considered as positive, and com-- .

pressxve strws and stram as negatwe.

l Detarmmethp total elongatlon of a steel bar 25 in. long, if the o
tensile stress is equal to 15X 10’ Ib per sq in. S

Answer. § = g in. C
2. Determine the tensile force on a cylindrical steel bar of 1in.

diameter, if the unit elongation is equal.to 0.7 X 1073,

Solumn “The tenslle stress in the bar, from eq. (4), is

o= eE 21><1o*1bpersqm

The tensile force, from eq. (2),

P=cd 21X103X-——165001b

3. What is the ratio of the moduli of eIasné:ty of the materials
of two bars of the same size if under the action of equal tensile forces
the unit elongations of the bars are in the ratio 1:42? Determine
these elongations if one.of the bars is of steel, the other of coppet, and
the tensile stress is 10,000 Ib per sq in.



