iy Smmesl PR T B Ty et et S s s vt Tr d
|l peomerimmciimaiy. s VNG S i S T . - by

\
A { |

¢ . |

) {

1 ' i

2 L _

e { d

e
el

N

LTI PR S AT A A



SAFETY OF COMPUTER
CONTROL SYSTEMS 1986
(SAFECOMP ’86)
Trends in Safe Real Time
Computer Systems

Proceedings of the Fifth IFAC Workshop
Sarlat, France, 14—17 October 1986

Edited by
W. J QUIRK

Computer Science & Systems Division,
Atomic Energy Research Establishment, Harwell, U.K.

Published for the

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by
PERGAMON PRESS

OXFORD - NEW YORK - BEIJING - FRANKFURT
SAO PAULO - SYDNEY - TOKYO - TORONTO



U.K.
US.A.

PEOPLE'S REPUBLIC
OF CHINA

FEDERAL REPUBLIC
OF GERMANY

BRAZIL
AUSTRALIA

JAPAN

CANADA

Pergamon Press, Headington Hill Hall, Oxford OX3 0BW, England
Pergamon Press, Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.

Pergamon Press, Qianmen Hotel, Beijing, People’s Republic of China

Pergamon Press, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany

Pergamon Editora, Rua Eca de Queiros, 346, CEP 04011, Sao Paulo, Brazil
Pergamon Press Australia, P.O. Box 544, Potts Point, N.S.W. 2011, Australia

Pergamon Press, 8th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku,
Tokyo 160, Japan

Pergamon Press Canada, Suite 104, 150 Consumers Road, Willowdale, Ontario M2] 1P9, Canada

Copyright © 1986 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or other-
wise, without permission in writing from the copyright holders.

First edition 1986

British Library Cataloguing in Publication Data

SAFECOMP '86 (Conference : Sarlat)

Safety of computer control systems 1986
(SAFECOMP ’86) : trends in safe real time
computer systems : proceedings of the Fifth
IFAC Workshop, Sarlat, France, 14-17

October 1986.

1. Automatic control—Data processing

L. Tite II. Quirk, W. J. I11. International
Federation of Automatic Control

629.8'312 QA402.3

ISBN 0-08-034801-7

These proceedings were veproduced by means of the photo-offset process using the manuscripts supplied by the
authors of the different papers. The manuscripts have been typed using different typewriters and typefaces. The
lay-out, figures and tables of some papers did not agree completely with the standard requirements: consequently
the reproduction does not display complete uniformity. To ensure rapid publication this discrepancy could not be
changed: nor could the English be checked completely. Therefore, the readers are asked to excuse any deficiencies
of this publication which may be due to the above mentioned reasons.

The Editor

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter



IFAG

International Federation of Automatic Control

SAFETY OF COMPUTER CONTROL SYSTEMS 1986
Trends in Safe Real Time Computer Systems



NOTICE TO READERS

If your library is not already a standing/continuation order customer or subscriber to this series, may we recommend that you place a
standing/continuation or subscription order to receive immediately upon publication all new volumes. Should you find that these volumes no longer serve
your needs your order can be cancelled at any time without notice.

Copies of all previously published volumes are available. A fully descriptive catalogue will be gladly sent on request.

ROBERT MAXWELL
Publisher

IFAC Related Titles

BROADBENT & MASUBUCHI: Multilingual Glossary of Automatic Control Technology
EYKHOFF: Trends and Progress in System Identification
ISERMANN: System Identification Tutorials (Automatica Special Issue)



FIFTH IFAC WORKSHOP ON SAFETY OF COMPUTER

CONTROL SYSTEMS (SAFECOMP ’86)
Trends in Safe Real Time Computer Systems

Organized by

Association pour le Développement de ’Enseignement, de
I’Economie et des Recherches de Midi-Pyrénées (ADERMIP)

Sponsored by

The International Federation of Automatic Control (IFAC) through

Association Francaise pour la Cybernétique, Economique et Technique (AFCET)
European Workshop on Industrial Computer Systems (EWICS)

International Federation of Information Processing (IFIP)

Electricité de France (EDF)

International Program Committee
J. M. A. Rata, France (Chairman)
W. J. Quirk, UK (Editor)

E de Agostino, Italy

T. Anderson, UK

A. Avizienis, USA

J. Bernussou, France

R. Bloomfield, UK

S. Bologna, Italy

P. Ciompi, Italy

G. Dahll, Norway

B. K. Daniels, UK

J. Debelle, Belgium

J. A. Dobbins, USA

W. Ehrenberger, FRG

H. Frey, Switzerland

National Organizing Commiattee
A. Costes (Chairman)

H. Krotoff

A. Poujol

R. Genser, Austria

E. Johnson, UK

S. Keresztely, Hungary
Th. Lalive d’Epinay, Switzerland
J. C. Laprie, France

R. Lauber, FRG

N. Leveson, USA

F. Redmill, UK

B. Runge, Denmark

I. C. Smith, UK

B. Sterner, Sweden

J. P. Vautrin, France
U. Voges, FRG

R. W. Yunker, USA



PREFACE

This fifth SAFECOMP workshop is looking to the trends
in computer safety which have emerged since the
first SAFECOMP, held in Stuttgart in 1979. The
micro-computer has evolved to the stage that much
conventional instrumentation is in fact computer-based.
Indeed, such basic building blocks for safety systems
as relays are fast being replaced by programmable
logic contrc'lers. The potential benefits of increased
safety to be gained from using computers are well
appreciated. But with these benefits come corresponding
challenges; the software industry is not renowned
for the freedom from error of its products. These
challenges have lead to a number of trends, three
of which are directly relevent to this SAFECOMP.

The first is that safety is not a local, private
matter. On the contrary, accidents take no notice
of plant boundaries, town boundaries or even national
boundaries. The need for widely accepted international
standards has never been so strong. But to be of
value, such standards must not be volumes full of
pious intents. Practical guidance on the successful
application of available techniques in real situations
is of paramount importance.

The second trend is fast recognition of the potential
of knowledge-based systems. With the traditional
conservatism of the safety industry, it is at first
sight somewhat surprising that their application to
safety systems is so advanced. Yet this is precisely
the reality of the situation. One reason for this
may be that it is well known that most humans do not
function optimally in crisis situations, so the
availability of reliable expert knowledge in such
situations is a great advantage.

The third trend is the proposed use of diversity,
particularly in software. There has, until recent
years, been a pervading view that more and more
care, time and effort should be taken over producing
a single, ultimate quality software product. Diversity
techniques bring this view into question. The
arguments over the precise cost and effectiveness
of such techniques have bheen quite widely rehearsed,
and will no doubt continue beyond this workshop. But
more practical experience and real project data are
becomming available.

The papers in this workshop cover a wide range of
topics. As well as underlining the three trends
noted above, papers address the problems of quality
assurance, fault tolerance, safe architectures and
safe design, operator interface and, lastly,
assessment and qualification.

The initiative and impetus for these events continues
to be EWICS TC 7, the 'Safety, Security and
Reliability' technical committee of the European
Workshop on Industrial Computer Systems. TC 7 is a
body of experts concerned with all aspects of safety
and security arising from the use of computers in
potentially hazardous situations. It addresses the
problems of protecting human wellbeing, the
environment and the plant itself against hazards
arising from failures in computer control or safety
systems however these may occur. The objectives of
TC 7 include the determination and dissemination of
procedures to construct, document, test and verify
the safe performance of such systems. It is currently
involved in the production of guidelines for System
Integrity, Design for System Safety, Software Quality
Assurance and Measures, and Safety and Reliability
Assessment.

The programme committee wish to record their thanks
to the sponsoring organisations: IFAC, AFCET, IFIP
& ADERMIP; also to the National Organising Committee
and EDF for their administrative efforts, to TC 7,
particularly to its chairman J.-M.A. Rata whose
tirelessness has urged the committee to work so hard
themselves, and to the Safety and Reliability Society
of Great Britain for their support in administering
the contract with the Commission of the European
Communities on behalf of TC 7 and so enabling it to
continue its work. The editor is once again grateful
for the assistance and forebearance of the staff of
the IFAC Publisher Pergamon Books in the preparation
of these proceedings. It is hoped that all will find
these new trends both stimulating and reassuring.

W.J. Quirk
AERE Harwell



CONTENTS

SESSION 1 — SOFTWARE QUALITY ASSURANCE
Chaired by S. Bologna

Same Thoughts on Software Quality Assurance
K. FRUHAUF

Quantitative Assessment of Safe and Reliable Software
B. RUNGE

Modelling System Quality
A.A. KAPOSI, B.A. KITCHENHAM

Programmable Electronic Systems Safety: Standards and Principles - An Industrial
Viewpoint
S.R. NUNNS, D.A. MILLS, G.C. TUFF

SESSION 2 — SOFTWARE FAULT-TOLERANCE
Chaired by B.K. Daniels

A Recovery Block Model and its Analysis
S.D. CHA

Software Diversity — Some Considerations about its Benefits and its Limitations
F. SAGLIEITI, W. EHRENBERGER

Error Recovery in Multi-version Software
K.S. TSO, A. AVIZIENIS, J.P.J. KELLY

Multi-version Software Development
J.P.J. KELLY, A. AVIZIENIS, B.T. ULERY, B.J. SWAIN, R.-T. LYU, A. TAI, K.-S. TSO
SESSION 3 - FAULT-TOLERANT DISTRIBUTED SYSTEMS

Chaired by F. Redmill

The Join Algorithm: Ordering Messages in Replicated Systems
L. MANCINI, G. PAPPALARDO

Protection of Shared Resources
F. MATLABOCCHIA, L. SIMONCINI

A Proposal for Distributed Commitment and Abort of Multi-site Transactions
in a Multi-microprocessor System
P. ANCILOTTI, B. LAZZERINI, C.A. PRETE, M. SACCHI

A Robust Database for Safe Real-time Systems
M. LA MANNA

Fault Detection Using Inverse Transfer Characteristic Software
J.D. CUMMINS
SESSION 4 — SAFE AND RELIABLE ARCHITECTURES

Chaired by E. Johnson

Self-checking Circuits: From Theory to Practice
M. NICOLAIDIS, B. COURTOIS

High Reliability Features Built in the VSB Bus
M. PAUKER

Safe and Reliable Computing on Board the Airbus and ATR Aircraft
J.C. ROUQUET, P.J. TRAVERSE

vii

13

17

21

27

35

43

51

57

63

67

13

83

89

93



viii Contents

SESSION 5 — KNOWLEDGE BASED APPROACH TO SAFETY
Chaired by W.J. Quirk

Using AI-methods to Improve Software Safety
N. THEURETZBACHER

Data Base Coherence: LRC Language Commutative Convergence
J.-F. HERY, J.-C. LALEUF

SESSION 6 - MAN-MACHINE INTERFACE
Chaired by U. Voges

Toward Fault-tolerant User Interfaces
R.A. MAXION

Modelling the Real Issues in Dependable Communications Systems
J.E. DOBSON, M.J. MARTIN

SESSION 7 - DESIGN FOR SAFETY
Chaired by I.C. Pyle

An Outline of a Program to Enhance Software Safety
N.G. LEVESON

Requirements Modelling of Industrial Real-time Systems by Automata and
Structured Analysis
A. ROAN, R. TROY

Engineering Software Safety
W.J. QUIRK

Design for Safety Using Temporal Logic
J. GORSKI

SESSION 8 — RELIABILITY AND SAFETY ASSESSMENT
Chaired by M. Ladame

Modelling and Dependability Evaluation of Safety Systems in Control and
Monitoring Applications

J. ARLAT, K. KANOUN

RDPS: A Software Package for the Validation and Evaluation of Dependable
Computer Systems

G. FLORIN, P. LONC, S. NATKIN, J.M. TOUDIC

Dependability Prediction: Comparison of Tools and Techniques
M. MULAZZANI, K. TRIVEDI

SESSION 9 - TEST AND QUALIFICATION
Chaired by G. Dahll

Testing Strategies and Testing Environment for Reactor Safety System
Software

S. BOLOGNA, D.M. RAO

Basic Qualification Concepts for Instrumentation and Control Systems
F.A. MONACO

Author Index

Subject Index

29

107

117

123

129

137

143

149

157

165

171

179

185

191

193



Copyright © IFAC SAFECOMP 86
Sarlat, France, 1986

SOFTWARE QUALITY ASSURANCE

SOME THOUGHTS ON SOFTWARE QUALITY
ASSURANCE

K. Friithauf

Brown Boveri & Cie, Baden, Switzerland

Abstract. The paper tries to review the problems a software quality
assurance engineer faces in implementing a software quality assurance
organisation. The delimitation of the software quality assurance is

summarised in five statements.
tasks to the software quality

these statements is illustrated

example.

Keywords. Computer software;

INTRODUCTION

Software quality assurance is a topic of

great interest nowadays. The reasons
are well-known. Less known is the
actual content of the term. If a

software engineer or a quality assurance
engineer receives the responsibility to
introduce software quality assurance in
an organisation he or she will have
difficulties to obtain a clear
definition of responsibilities and tasks
because the perception what software
quality assurance should do differs
Largely among the software community.
Most Likely no two companies will have
the same assignment of responsibilities
and tasks. This is good as long as
every company has a defined policy on
which the assignment is based. Such
policy is a prerequisite for avoiding
conflicts and preventing frustrations.

Qur view is one from within a company
involved in conventional manufacturing
as well as in software development. The
quality assurance organisation spans the
whole company and the problem of
integrating actions assuring software
quality in the traditional quality
assurance program has been tackled. It
is feasible and necessary to integrate
the software quality assurance in
organisations producing Llarge embedded
software systems. Unfortunately the
standardisation went the opposite way.
The CSA Q396.1 (1982) standard for
software quality assurance program is
written in spirit of the CSA 2299.1
(1979) standard but still, the
implementation requires a merge of the
two. Merge of the IEEE 730 (1984)
standard with CSA Z299.1 (1979) is even
more difficult.

The assignment of responsibilities and
assurance organisation in spirit of
using system test activity as an

software quality assurance; software
engineering; software management.

Though we are not able to validate the
quality of a large software product, we
may be able to check and judge the
quality of the procedures by which it is
produced. Therefore more and more
purchasers will require a documented
quality assurance program with special
emphasis on software. There they will
find what the corporate quality standard
is supposed to be.

First definitions of some terms are

given and their implications are
discussed. Based on the established
terminology the delimitations of a
software quality assurance organisation
are summarised in five statements. The
assignment of responsibilities is

illustrated on the example of the system
test activity.

DEFINITIONS

In this section those terms are defined
and discussed which are necessary to
understand the paper.

Software Quality Assurance. The
definitions in the available standards
are similar but not identical. In IEEE
730 (1984) quality assurance is defined
as follows :

"A planned and systematic pattern of

all actions necessary to provide
adequate confidence that the item or
product conforms to established

technical requirements.”



K. Frihauf

The software manager is
entirely responsible for the
project costs, schedules, and
quality as well as for the
quality of the resulting
product.

The craftsman in his workshop
takes the full responsibility
for the financial and technical
success. He has no documented
conception of quality but he
will try hard to communicate
his feeling for and
understanding of quality to his
apprentice. A product not
conforming to his conception of
quality will certainly not
Leave the workshop. Every
evening when the craftsman does
the bookkeeping he gets an
immediate feedback on the
adequacy of his conception of
quality.

The same principle is valid for
a company producing large
software systems. The scales
are different however. The
software manager cannot do the
work alone. He or she will
employ an accountant for
support in bookkeeping and will
expect him or her to know at
any time e.g. how much money
has been spent on the project.
If he or she is a clever
software manager he or she will
employ a software quality
assurance engineer and will
expect him or her to know at
any time e.g. how portable
is the product (if portability
is a requirement). The analogy
18 3 The accountant is
responsible for producing the
balance sheet in terms of money

and the software quality
assurance engineer in terms of
quality attributes. The
software manager needs, similar
to the craftsman in the

workshop, both as basis for
decision making.

The primary goal of the

software quality assurance
organisation 1is to know the
quality of the software

products and projects.

A prerequisite for achieving
this goal is the definition of
criteria for the evaluation of
quality. For the project
quality the documentation of
the quality assurance program
is the basis. A checklist can
be derived and a project audit
will reveal the extent to which
the required quality assurance
actions are implemented by the
project team.

Metrics are the means to
evaluate quality of software
products. Currently no
commonly accepted metrics are

available therefore they are
not suitable for comparing
products produced in different
environments. Nevertheless
they can be useful if applied

on products from the same
environment. We experience
that metrics evaluation in

product audits is of great
value in order to assess the
adequacy of the project
progress and of the product
evolution. Applying the same
small set of metrics to
different products and to the
same product at different
stages of evolution provides a

relevant collection of data
which can indicate problem
areas.

The metrics for quantification
of software quality need to
have the following properties.
The metric shall be

- measurable
i.e. an algorithm or
method exists

- reproduceable
i.e. it can be measured
exactly thus its value can
be monitored continuously

- expressive

1 o8 permits the
distinction of "good” and
"bad"”

- meaningful
i.e. results <corresponds
to other useful measures

- efficient
Te@u the potential benefit
of the findings outweights
the cost of the measurement

- cost indicating
i.e. can be related to the
development and maintenance
costs

The choice of a metric must
have an objective. A simple
example is operating system
dependence of the product. The
objective for the metric is to
have a correlation between its
value and the cost of porting
the software to a new release
of the operating system or to a
completely different one. It
is the task of the software
quality assurance engineer to
find the metric with the best
correlation. The spectrum of
potential metrics is Limited
only by his or her fantasy
(number of modules <containing
operating system references,
total number of operating
system references, number of
referenced operating system
facilities, etc.).



Some Thoughts on Software Quality Assurance

The CSA Q396.1 (1982) standard defines
software quality assurance in following
terms :

"A planned and systematic pattern of
all actions necessary to provide
adequate confidence that software
components conforms to established
requirements and specifications.”

From these definitions immediately
follows that actions contributing to the

software production are not quality
assurance actions, i.e. to build
software is not software quality
assurance. The key issue for software

quality assurance is confidence gaining.
Some actions Like test are on the edge -
nobody would claim that software can be
built without any test, and on the other
hand it 1is «clear that tests provide
confidence. System testing will be used
later to illustrate the delimitation of
responsibility areas.
Quality Assurance Program. The
documented set of quality assurance
actions. In IEEE 730 (1984) the term
plan is used instead of program.
Corresponding to CSA Q396.1 (1982) the
elements of the documentation are :

- Quality assurance manual

This is the constitution of the
quality assurance program. It
contains the software quality
assurance policy of the company
and certifies the commitment of
the management to it.

- Quality assurance procedures

The quality assurance
procedures are the laws of the
program. They specify the
implementation of the software
quality assurance actions. The
procedures must be concise so
that they can be easily
implemented and the conformance

to them can be checked
unambiguously. It is a must
that the responsibilities for

carrying out the actions are

uniquely assigned.

- Regulations (standards, rules,
conventions)
For specific topics (e.g.
coding rules in a programming

language) detailed descriptions

are required. These are not
written in the form of quality
assurance procedures. We
recommend to write such

regulations in the form of a
requirement specification for a
tool (e.g. tailored editor,
prettyprinter). This enforces
preciseness and stimulates the
provision of such a tool - the
best way to ensure conformance
to the regulation.

The danger is big that a pile of paper
will be produced and nobody will read
Tt The real challenge is to write all

concisely that they are
project team

documents so
practical, an aid to the
and not to the papermill.

Project. Project is the planned pattern
of all actions necessary to build a
software product. For the purpose of
this paper we do not distinguish between
development projects (product sold many

times) and customisation projects
(single shot product). For this
distinction see Frdhauf, Sandmayr

(1983). The people involved in the
project form the project team, and the
leader is called here software manager.

Quality Assurance
Responsible for the provision and
effectiveness of the quality assurance
program. Independent from the projects.
The members of the quality assurance
organisation are called software quality

Organisation.

assurance engineers. The important
matter is that all actions in the
project are identified and the

responsibility for the particular action
is uniquely assigned by the management
either to the project team or to the
quality assurance organisation. Such
project activities, characterised by
their output, are for instance :

system specification (output =
system specification document)

- system specification review
(output = review report)
- subsystem design (output =

subsystem design document)

- component coding and test
(output = release of a
component),

- system test design (output =

system test procedures),

- system integration and test
(output = release of the
system),

- document standardisation
(output = standard for document
layout and content)

- product auditing (output =
product audit report)

The example should illustrate the range
of activities we have in mind. The
software quality assurance is performing
- per definition - only a subset of
these activities. It is a difficult and
ambiguous but necessary task to define
the complete set of these actions.

DELIMITATION OF SOFTWARE
QUALITY ASSURANCE

This section provides some guidelines
for delimitation of the responsibilities
and tasks of a software quality
assurance organisation.



K. Frithauf

The secondary goal of the
software quality assurance
organisation is to provide and
maintain the documentation of
the quality assurance program.

0f course the first thing to do

is to document the quality
assurance program. By this
statement we would Like to
point out that the mission of
the quality assurance
organisation is quality
accounting and not paper
production. The provision and
maintenance of the quality

assurance manual, procedures,
and regulations is a major task
of the quality assurance
organisation. The actual
content of the documents shall
be worked out in cooperation
with the project team in order
to increase the acceptance of
the specified actions. Forcing
regulations upon a project team
from an independent software
quality organisation will
seldom work. The project team
and first of all the software

manager must have a deep
commitment to the quality
assurance program. They gain

it easiest by participation in
setting the quality objectives,
i.e. providing the meat
(content) on the bones
(documents) of software quality
assurance.

The software quality
is a service
concerning all
software quality.

assurance
organisation
matters of

The attitude of the
quality assurance engineers is
crucaals They must be aware of
the fact that they have to
perform for software managers
and project teams and not the
other way around. The quality
assurance engineers must not
try to replace software
managers, but also, the
software managers must not
wriggle out of responsibility
by delegating it to the
software quality assurance
engineer. Especially in the
latter case the outcome will be
a disaster.

software

Software quality assurance is
very similar to with the work
of consultants. The software
quality assurance engineer
stands between the supplier
(project team) and the
purchaser (software manager).
He or she has the right and
duty to make recommendations
but has no control over the
flow of money and <consequently
should not have the veto right.
The independency of the quality
assurance organisation,
however, shall enable the
raising of software quality

On the activity type system
want to

issues up to the
management level.

adequate

Software quality assurance is a
discipline within software
engineering and not the other
way around.

This is at least our view and
our way to delimitate software

quality assurance. Other
software engineering
disciplines are e.g.
specification methods and
tools, design methods and
tools, software project
management, software cost
estimation, and configuration
management. The reason for

this delimitation is the common
practice we experience : Under
the heading of software quality
assurance a lot is said or
written e.g. about software
Life cycle and structured
programming. We are convinced
that a wide room for research,
teaching, and practice remains
for software quality assurance
without excursions into other
disciplines.

SYSTEM TESTING

AN EXAMPLE OF DELIMITATION

testing we

illustrate the assignment of

responsibilities to the software quality

organisation in

try to

out).

1.

identify the
involved
a project
that system

detail. Let us first
particular actions
in system testing (first of all

should of <course recognise

testing must be carried

A metric for the definition of
the system test quality level
must be chosen (e.g. every
specified function and quality
attribute shall be tested at
least by one "normal” and one
"error" test case, every
specified output shall be
produced at least once, etc.).

A metric for the end of the
system test activity must be
specified (e.g. less than five
deficiencies found, estimated
effort for the repair of the

deficiencies less than X
mandays, etc.).
A method for test case

selection must be chosen.

A method for test case
specification must be chosen.

The test cases must be selected
and the test procedures must be
written.



Some Thoughts on Software Quality Assurance

6. A method for reviewing test
procedures must be established.

7. A method for documenting
reviews must be chosen.

8:s The test procedures must be
reviewed.

9. The review report must be
prepared.

10. The test procedures must be
accepted and released for
carrying out the test.

11. The review report must be
evaluated.

12. A method for documenting the
test must be chosen.

13. The test must be carried out.

14, The test report must be
prepared.

15. The test must be accepted and
finished (see criteria above).

16. The test report must be
evaluated.

An impressive lList. Although not
comprehensive (e.g. the test
installation must be planned and made
available, all chosen methods must be
documented) sufficient for our purpose.

The steps of test and review report
evaluation need some explanation. We
mean by that the <collection of these
reports and their evaluation aiming at
identification of frequent error types
and of software items with high error

rate. This serves as a basis to
initiate corrective actions in the
project (in case of frequent error
types) or concerning the software

product (in <case of items with high
error rate).

The evaluation of the review and test
reports is - in the Light of the
delimitation 2 - undoubtedly the
responsibility of the software quality

assurance organisation. The
identification of the activities for
which a method must be <chosen and
documented (test <case selection and
specification, review of test

procedures, review and test reporting in
our example) shall be the responsibility

of the software quality assurance
organisation. The responsibility for
the actual selection of the methods is -
in the Light of the delimitation 1 - the

responsibility of the software manager.
The software quality assurance
organisation shall play the role of a
consultant office and provide
recommendations based on the findings
from the evaluations.

We consider the preparation of the test

procedures (i.e. test design), their
review as well as the test itself an
integral part of the software

development process. Reviews and tests

not only increase the lLevel of
confidence but also have the effect of
know-how transfer within the project
team. This side-effect has a prevailing
value in large projects. Therefore
these activities are <carried out by
project team members. The review and
test team assignment is the sole
responsibility of the software manager
and his or her own interest to obtain an
outcome he or she can rely on. The
appointment of an independent software
quality assurance engineer in tests and
reviews is a good practice.

CONCLUSIONS

The responsibilities of the software
quality assurance organisation are from
our point of views as follows :

- Provide and maintain the
documentation of the software
quality assurance program, i.e.
manual, procedures, guidelines.

- Define metrics for measurement
of the software product and
project quality.

- Obtain the value of the metrics
by means of product and project
audits.

- Actively participate in reviews
and tests.

- Evaluate test, review, and
software problem reports.

- Provide recommendations for
corrective actions (in project
or product).

We are aware that quality must be built
in, that the project team must be
quality conscious, and that the software
manager is responsible for the quality.
Therefore our conclusion is that the
software quality assurance organisation
is to be made responsible for the
analytical and the project team for the
constructive quality assurance actions.
However, the communication between the
software quality assurance engineer and
the specialists for software development
methods and tools is vital for providing
the adequate software development
environment.

A practising software quality assurance
engineer will have to do a lot of
research type work and wuse extensively
his or her fantasy in the quality
analysis work. This job requires a deep
understanding of the purpose of the
produced software and of the software
development process in order to devise
the few figures which pointed express
the state of affairs.

The other main part of the job is to
communicate with the project team to
draw off its conception of quality and



6 K. Friihauf

to involve it in preparation of the
documentation. While the software
manager'’s primary concern is what
activity in which point of time the
project team members are working on, the
concern of the software quality
assurance engineer is how and by which
means they are working. For that he or
she is employed by the software manager.
The challenge here is to provide help to
both the software manager and the
project team members and to avoid the
role of a spy, policeman, or betrayer by
all means.

ACKNOWLEDGMENT

The author would lLike to express his
appreciation to Dr. H. Sandmayr for
the time consuming discussions Leading
to the policies presented in this paper
and to acknowledge his patience in
reading the manuscript of the paper.

REFERENCES

CSA 2299.1 (1979). Quality Assurance
Program Requirements. CSA Standard
2299.1-1979.

CSA Q396.1 (1982). Software Quality
Assurance Program, Part I. CSA
Preliminary Standard Q396.1-1982.

Frdhauf K., and Sandmayr H. (1983).
Quality of the Software Development
Process. IFAC Safecomp 83, Cambridge
University Press 1983, pp. 145-152.

IEEE 730 (1984). Standard for Software
Quality Assurance Plans. IEEE Std
730-1984.



Copyright © IFAC SAFECOMP '86
Sarlat, France, 1986

QUANTITATIVE ASSESSMENT OF SAFE AND
RELIABLE SOFTWARE

B. Runge

Runge-data, Ablevangen 3, DK-2760 Madilpv, Denmark

Abstract. There is a lot of work going on concerning standards for the creation and

verification of safe and reliable software

The standards are mainly concerned with

developement methods and how to control the developement process. Adherence to these
standards may prove profitable - even if they are not required - because the methods

and tools described by the standards

the best ones available, and their

application will usually lead to a more economic development process.

In order to verify the achievement of safe and reliable software, It is necessary to
measure a set of relevant attributes and confirm these measurments against required
levels. The first problem is to find practical wrays of measuring safety and
reliability related attributes. The second problem is to achieve the required level of
these attributes. The third problem is to define the required levels and verify their
consistency with traditional safety and reliability work.

An Expert System with safety and reliability knowledge is proposed.

Keywords. Standards; Software attributes;

Softrare measures (metrics); Assessment of

software; Safe software systems; Software engineering; Expert Systems.

INTRODUCTION

A safety related system is a system used in an
environment that may endanger human 1life and
prosperity or property.

The wuse of microprocessors 1in safety related
control instrumentation increases the complexity
of these systems. The assessment of such complex
systems containing software is becoming a compli-
cated matter for the regulatory bodies.

It 1is vital to risk reduction that the safety
requirements are implemented in the equipment and
can be verified before the equipment is put into
operation. This verification is performed by a
licensing body, who must specify a set of criteria
which must be met before the system may be put
into operation.

Safety requirements are typically expressed in
terms of avoidance of dangerous situations with
critical consequences. How these dangerous situa-
tions and their consequences are to be avoided
must be decided by the systems designer under the
constraints of limited resources.

In order to know which hazards to avoid a risk
analysis of the system must be performed to
identify the hazardous system states and their
possible consequences.

The results of the risk analysis should then form
the basis for decisions on where and to what
degree safequards (i.e. protection against user
errors and sabotage, error detection and correc-
tion, fail to safe and fail operational) must be
implemented in the system requirements - into the
product.

At the same time the degree of control of the
system development - the process - must be decided

(i.e. Detailed verification, Quality Assurance
Configuration Management, Standards, Program De-
sign Review, Documentation, Verification and Vali-
dation, Very detailed test plans and procedures).

The main problem in assessing software 1is that
often the licensing body is not involved until the
software is finished. Unless the development pro-
cess has been very carefully recorded, documenta-
tion standards and quality assurance standards
follored, the assessors have little or no opportu-
nity to verify whether the required safety and
reliability levels have been achieved. For relati-
vely simple systems this may not be prohibitive
but for complex systems the verification task is
enormous, if not impossible.

In order to assess the safety and reliability of a
system, the related attributes must be very
strictly controlled during the system's develop-
ment process. Many safety relevant attributes do
not have practical measures and can therefore not
be strictly controlled. So licensing bodies are
forced to impose the requirement on the developers
of safe systems, that they adhere to proper
standards on systems development and quality assu-
rance.

In Europe the European HRorkshop on Industrial
Computer Systems, Technical Committee 7, Safety
and Security (ERICS TC-7), is developing guideli-
nes concerning the developement and assessment of
safety related softwrare (and hardware) (EWRICS-TC7
1982, 1984, 1985a, 1985b, 1985c) As chairman of
the subgroup on "Measures for Software Quality
Assurance" I have a special interest in safety
related software attributes and their measure-
ments. He are currently developing a guideline,
which specifically addresses the identification
and measurement of software attributes in safety
related systems



8 B. Runge

For a more detailed discussion I refer to (Ander-
sen, 1984) which is a comprehensive key paper on
the problems of obtaining and assessing safe and
reliable software, and (Gilb, 1983) ~which is
presenting a systematic approach to defining and
controlling the system attributes.

HOW TO MAKE SAFE SYSTEMS

Let me mention two methods for building safety and
reliability into a software system. One is to
follor standards, the underlying assumption being
that good practices will produce good systems.
There do exist a variety of standards and guideli-
nes advocating the currently best known quality
assurance methods for a controlled development and
transition between the various phases in the
sof'tware life cycle.

The second method is to identify and measure the
safety and reliability related attributes of the
system and thus demonstrate the achievement of
required levels. The first problem is to identify
all the relevant and critical attributes of the
system. The second problem 1is to document and
control the achievement of the required levels
This area still needs a lot of research.

The willingness of spending resources to produce a
safe system is depending on the point of view. The
user/contractor wants to minimize the resources
(money, time etc.) needed to achieve a required
safety level (imposed by the authorities), while
the licensing authorities ~®Rant to maximize the
safety level With a reasonable resource expenditu-
re (UK: HSH Act 1974, "As far as 1s reasonable
practicable"). The actual system will then be a
compromise between these extremes, but with an
acceptable risk for people and property

One of the necessary - but not sufficient - means
of producing safety related software is Software
Quality Assurance (SQA). The aim of 3QA is to
ensure a strict control of the softwrare during the
Whole life cycle. Another aim is to ensure fulfil-
ment of the assessment criteria which are risk and
system dependent.

In order to perform SQA the qualities of the
sof tRare and their required levels must be speci-
fied. To measure the qualities of the software and
the resources needed for its implementation a set
of related measures must be defined. These measu-
res must be practically measurable and must re-
flect the software qualities (and the limited
resources).

The measures can be quantitative or qualitative.
Quantitative measures are objective, and if there
is a strong correlation to safety they may give a
measure of the obtained safety level. Unfortunate-
ly today no quantitative measures can be used for
safety evaluation, since their correllation to
safety have not been estimated. Qualitative measu-
res - usually implemented through checklists -
will lead the designer to ‘"good" designs and
thereby ensure a system analysis that may ease the
workload of the assessor. Qualitative assessment
is used today.

Software measures do not stand alone. They are
closely related to attributes. Attributes are the
qualities ("how ~®ell") or resources ("hor much")
of a system. In order to specify a set of relevant
measures their corresponding attributes must be
defined.

This means that you must first 1list all criti-
cal attributes of the system, both qualities and
resources. A "critical" attribute is one which, if
it somehow got out of control, wWould threaten the

existence of the system. Next you must devise a
feasible way of measuring these attributes - the
measures.

Measurements are made, not of the software itself,
but of attributes of the software. If measurements
are to be meaningful, attributes which are impor-
tant to software must be identified. Moreover
attributes which are measurable objectively are
required, otherwise the application of criteria is
invalid. Further, not only the importance, but
also the meanings of the measurements must be
determined. Only then criteria can be applied
Rhich are known to be appropriate - and also Kknown
not to be misleading.

The majority of decisions on attributes, measures
and criteria are made during the first phases in
the project lifecycle. The actual measures are

made as soon as possible, and their conformity
®ith the acceptance criteria established.

ATTRIBUTES AND THEIR MEASURES

Attribute Types.
There are tro types of software attributes:

a. Quality attributes, describing the qualities of
the software.

Typical quality attributes are:

Safety.
Performance.
Usability.
Availability.
Adaptability.
Other qualities.

The “"other" attributes indicate that the set
may not be complete. Specific projects may
introduce some attributes which are less gene-
ral but should be considered anyway

b. Resource attributes, describing the resources
needed to implement the quality attributes into
the softrare at the required levels

Typical resource attributes are:

Cost.

Manpower.

Time.

Tools.

Other resources.

Attributes must be hierarchically sub-divided to a
level or concept for ~&®hich we can devise a
practical measuring method. I will give some
examples of attributes and their sub-divisions
beloR.

Software Attribute Measures

Software measures are the measures of softrare
attributes. Software attributes are only a part of
the overall system attributes. Consequently it is
nessecary to consider all system attributes when
assessing a system. This paper is restricted to
attributes related to software.

In this section a set of software related attribu-
tes are proposed wRith examples of measures

Quality Attirbutes

Safety is a measure of the degree to which



