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Preface

Since 1993, cryptographic algorithm research has centered around the Fast Soft-
ware Encryption (FSE) workshop. First held at Cambridge University with 30
attendees, it has grown over the years and has achieved worldwide recognition
as a premiere conference. It has been held in Belgium, Israel, France, Italy, and,
most recently, New York.

FSE 2000 was the 7th international workshop, held in the United States for
the first time. Two hundred attendees gathered at the Hilton New York on Sixth
Avenue, to hear 21 papers presented over the course of three days: 10-12 April
2000. These proceedings constitute a collection of the papers presented during
those days.

FSE concerns itself with research on classical encryption algorithms and re-
lated primitives, such as hash functions. This branch of cryptography has never
been more in the public eye. Since 1997, NIST has been shepherding the Advan-
ced Encryption Standard (AES) process, trying to select a replacement algorithm
for DES. The first AES conference, held in California the week before Crypto 98,
had over 250 attendees. The second conference, held in Rome two days before
FSE 99, had just under 200 attendees. The third AES conference was held in
conjunction with FSE 2000, during the two days following it, at the same hotel.

It was a great pleasure for me to organize and chair FSE 2000. We received 53
submissions covering the broad spectrum of classical encryption research. Each of
those submissions was read by at least three committee members — more in some
cases. The committee chose 21 papers to be presented at the workshop. Those
papers were distributed to workshop attendees in a preproceedings volume. After
the workshop, authors were encouraged to further improve their papers based
on comments received. The final result is the proceedings volume you hold in
your hand.

To conclude, I would like to thank all the authors who submitted papers
to this conference, whether or not your papers were accepted. It is your conti-
nued research that makes this field a vibrant and interesting one. I would like
to thank the other program committee members: Ross Anderson (Cambridge),
Eli Biham (Technion), Don Coppersmith (IBM), Cunsheng Ding (Singapore),
Dieter Gollmann (Microsoft), Lars Knudsen (Bergen), James Massey (Lund),
Mitsuru Matsui (Mitsubishi), Bart Preneel (K.U.Leuven), and Serge Vaudenay
(EPFL). They performed the hard — and too often thankless — task of selec-
ting the program. I'd like to thank my assistant, Beth Friedman, who handled
administrative matters for the conference. And I would like to thank the atten-
dees for coming to listen, learn, share ideas, and participate in the community. I
believe that FSE represents the most interesting subgenre within cryptography,
and that this conference represents the best of what cryptography has to offer.

Enjoy the proceeedings, and I'll see everyone next year in Japan.

August 2000 Bruce Schneier
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Real Time Cryptanalysis of A5/1 on a PC

Alex Biryukov!, Adi Shamir!, and David Wagner?

! Computer Science department, The Weizmann Institute, Rehovot 76100, Israel
2 Computer Science department, University of California, Berkeley CA 94720, USA.

Abstract. A5/1 is the strong version of the encryption algorithm used
by about 130 million GSM customers in Europe to protect the over-
the-air privacy of their cellular voice and data communication. The best
published attacks against it require between 2° and 2*° steps. This le-
vel of security makes it vulnerable to hardware-based attacks by large
organizations, but not to software-based attacks on multiple targets by
hackers.

In this paper we describe new attacks on A5/1, which are based on subtle
flaws in the tap structure of the registers, their noninvertible clocking
mechanism, and their frequent resets. After a 2% parallelizable data
preparation stage (which has to be carried out only once), the actual
attacks can be carried out in real time on a single PC.

The first attack requires the output of the A5/1 algorithm during the
first two minutes of the conversation, and computes the key in about
one second. The second attack requires the output of the A5/1 algo-
rithm during about two seconds of the conversation, and computes the
key in several minutes. The two attacks are related, but use different
types of time-memory tradeoffs. The attacks were verified with actual
implementations, except for the preprocessing stage which was extensi-
vely sampled rather than completely executed.

REMARK: We based our attack on the version of the algorithm which
was derived by reverse engineering an actual GSM telephone and pu-
blished at http://www.scard.org. We would like to thank the GSM
organization for graciously confirming to us the correctness of this un-
official description. In addition, we would like to stress that this paper
considers the narrow issue of the cryptographic strength of A5/1, and
not the broader issue of the practical security of fielded GSM systems,
about which we make no claims.

1 Introduction

The over-the-air privacy of GSM telephone conversations is protected by the A5
stream cipher. This algorithm has two main variants: The stronger A5/1 version
is used by about 130 million customers in Europe, while the weaker A5/2 version
is used by another 100 million customers in other markets. The approximate
design of A5/1 was leaked in 1994, and the exact design of both A5/1 and A5/2
was reverse engineered by Briceno from an actual GSM telephone in 1999 (see

8-
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2 A. Biryukov, A. Shamir, and D. Wagner

In this paper we develop two new cryptanalytic attacks on A5/1, in which
a single PC can extract the conversation key in real time from a small amount
of generated output. The attacks are related, but each one of them optimizes
a different parameter: The first attack (called the biased birthday attack)
requires two minutes of data and one second of processing time, whereas the
second attack (called the the random subgraph attack) requires two seconds
of data and several minutes of processing time. There are many possible choices
of tradeoff parameters in these attacks, and three of them are summarized in
Table 1.

Table 1. Three possible tradeoff points in the attacks on A5/1.

Attack Type Preprocessing Available Number of Attack time
steps data  73GB disks

Biased Birthday attack (1) 2% 2 minutes 4 1 second

Biased Birthday attack (2) 948 2 minutes 2 1 second

Random Subgraph attack 2148 2 seconds 4 minutes

Many of the ideas in these two new attacks are applicable to other stream
ciphers as well, and define new quantifiable measures of security.

The paper is organized in the following way: Section 2 contains a full descrip-
tion of the A5/1 algorithm. Previous attacks on A5/1 are surveyed in Section
3, and an informal description of the new attacks is contained in Section 4. Fi-
nally, Section 5 contains various implementation details and an analysis of the
expected success rate of the attacks, based on large scale sampling with actual
implementations.

2 Description of the A5/1 Stream Cipher

A GSM conversation is sent as a sequence of frames every 4.6 millisecond. Each
frame contains 114 bits representing the digitized A to B communication, and
114 bits representing the digitized B to A communication. Each conversation
can be encrypted by a new session key K. For each frame, K is mixed with a
publicly known frame counter F},, and the result serves as the initial state of a
generator which produces 228 pseudo random bits. These bits are XOR’ed by
the two parties with the 1144114 bits of the plaintext to produce the 1144114
bits of the ciphertext.

A5/1 is built from three short linear feedback shift registers (LFSR) of lengths
19, 22, and 23 bits, which are denoted by R1, R2 and R3 respectively. The
rightmost bit in each register is labelled as bit zero. The taps of R1 are at bit
positions 13,16,17,18; the taps of R2 are at bit positions 20,21; and the taps of
R3 are at bit positions 7, 20,21,22 (see Figure 1). When a register is clocked,
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its taps are XORed together, and the result is stored in the rightmost bit of
the left-shifted register. The three registers are maximal length LFSR’s with
periods 21° — 1, 222 — 1, and 223 — 1, respectively. They are clocked in a stop/go
fashion using the following majority rule: Each register has a single “clocking”
tap (bit 8 for R1, bit 10 for R2, and bit 10 for for R3); each clock cycle, the
majority function of the clocking taps is calculated and only those registers whose
clocking taps agree with the majority bit are actually clocked. Note that at each
step either two or three registers are clocked, and that each register moves with
probability 3/4 and stops with probability 1/4.

18 13 Cl 0

v
_

m = Majority ( C1, C2, C3)

Fig.1. The A5/1 stream cipher.

The process of generating pseudo random bits from the session key K and
the frame counter F), is carried out in four steps:

— The three registers are zeroed, and then clocked for 64 cycles (ignoring the
stop/go clock control). During this period each bit of K (from Isb to msb)
is XOR’ed in parallel into the Isb’s of the three registers.

— The three registers are clocked for 22 additional cycles (ignoring the stop/go
clock control). During this period the successive bits of F}, (from Isb to msb)
are again XOR’ed in parallel into the Isb’s of the three registers. The contents
of the three registers at the end of this step is called the initial state of the
frame.



4 A. Biryukov, A. Shamir, and D. Wagner

— The three registers are clocked for 100 additional clock cycles with the
stop/go clock control but without producing any outputs.

— The three registers are clocked for 228 additional clock cycles with the
stop/go clock control in order to produce the 228 output bits. At each clock
cycle, one output bit is produced as the XOR of the msb’s of the three
registers.

3 Previous Attacks

The attacker is assumed to know some pseudo random bits generated by A5/1
in some of the frames. This is the standard assumption in the cryptanalysis of
stream ciphers, and we do not consider in this paper the crucial issue of how
one can obtain these bits in fielded GSM systems. For the sake of simplicity, we
assume that the attacker has complete knowledge of the outputs of the A5/1 al-
gorithm during some initial period of the conversation, and his goal is to find the
key in order to decrypt the remaining part of the conversation. Since GSM tele-
phones send a new frame every 4.6 milliseconds, each second of the conversation
contains about 2% frames.

At the rump session of Crypto 99, Ian Goldberg and David Wagner anno-
unced an attack on A5/2 which requires very few pseudo random bits and just
O(21'%) steps. This demonstrated that the “export version” A5/2 is totally inse-
cure.

The security of the A5/1 encryption algorithm was analyzed in several papers.
Some of them are based on the early imprecise description of this algorithm,
and thus their details have to be slightly modified. The known attacks can be
summarized in the following way:

— Briceno[3] found out that in all the deployed versions of the A5/1 algorithm,
the 10 least significant of the 64 key bits were always set to zero. The com-
plexity of exhaustive search is thus reduced to O(2%4). !

— Anderson and Roe[l] proposed an attack based on guessing the 41 bits in
the shorter R; and R registers, and deriving the 23 bits of the longer R3
register from the output. However, they occasionally have to guess additional
bits to determine the majority-based clocking sequence, and thus the total
complexity of the attack is about O(2%°). Assuming that a standard PC can
test ten million guesses per second, this attack needs more than a month to
find one key.

— Golic[4] described an improved attack which requires O(2%°) steps. However,
each operation in this attack is much more complicated, since it is based on
the solution of a system of linear equations. In practice, this algorithm is not
likely to be faster than the previous attack on a PC.

! Our new attack is not based on this assumption, and is thus applicable to A5/1
implementations with full 64 bit keys. It is an interesting open problem whether we
can speed it up by assuming that 10 key bits are zero.
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— Golic[4] describes a general time-memory tradeoff attack on stream ciphers
(which was independently discovered by Babbage [2] two years earlier), and
concludes that it is possible to find the A5/1 key in 222 probes into random
locations in a precomputed table with 242 128 bit entries. Since such a table
requires a 64 terabyte hard disk, the space requirement is unrealistic. Al-
ternatively, it is possible to reduce the space requirement to 862 gigabytes,
but then the number of probes increases to O(22%). Since random access to
the fastest commercially available PC disks requires about 6 milliseconds,
the total probing time is almost three weeks. In addition, this tradeoff point
can only be used to attack GSM phone conversations which last more than
3 hours, which again makes it unrealistic.

4 Informal Description of the New Attacks

We start with an executive summary of the key ideas of the two attacks. More
technical descriptions of the various steps will be provided in the next section.

Key idea 1: Use the Golic time-memory tradeoff. The starting point
for the new attacks is the time-memory tradeoff described in Golic[3], which is
applicable to any cryptosystem with a relatively small number of internal states.
A5/1 has this weakness, since it has n = 264 states defined by the 19+22+23 = 64
bits in its three shift registers. The basic idea of the Golic time-memory tradeoff
is to keep a large set A of precomputed states on a hard disk, and to consider the
large set B of states through which the algorithm progresses during the actual
generation of output bits. Any intersection between A and B will enable us to
identify an actual state of the algorithm from stored information.

Key idea 2: Identify states by prefixes of their output sequences.
Each state defines an infinite sequence of output bits produced when we start
clocking the algorithm from that state. In the other direction, states are usually
uniquely defined by the first log(n) bits in their output sequences, and thus
we can look for equality between unknown states by comparing such prefixes
of their output sequences. During precomputation, pick a subset A of states,
compute their output prefixes, and store the (prefix, state) pairs sorted into
increasing prefix values. Given actual outputs of the A5/1 algorithm, extract
all their (partially overlapping) prefixes, and define B as the set of their cor-
responding (unknown) states. Searching for common states in A and B can be
efficiently done by probing the sorted data A on the hard disk with prefix queries
from B.

Key idea 3: A5/1 can be efficiently inverted. As observed by Golic,
the state transition function of A5/1 is not uniquely invertible: The majority
clock control rule implies that up to 4 states can converge to a common state
in one clock cycle, and some states have no predecessors. We can run A5/1
backwards by exploring the tree of possible predecessor states, and backtracking
from dead ends. The average number of predecessors of each node is 1, and thus
the expected number of vertices in the first k levels of each tree grows only
linearly in k (see[3]). As a result, if we find a common state in the disk and data,
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we can obtain a small number of candidates for the initial state of the frame.
The weakness we exploit here is that due to the frequent reinitializations there
is a very short distance from intermediate states to initial states.

Key idea 4: The key can be extracted from the initial state of any
frame. Here we exploit the weakness of the A5/1 key setup routine. Assume that
we know the state of A5/1 immediately after the key and frame counter were
used, and before the 100 mixing steps. By running backwards, we can eliminate
the effect of the known frame counter in a unique way, and obtain 64 linear
combinations of the 64 key bits. Since the tree exploration may suggest several
keys, we can choose the correct one by mixing it with the next frame counter,
running A5/1 forward for more than 100 steps, and comparing the results with
the actual data in the next frame.

Key idea 5: The Golic attack on A5/1 is marginally impractical.
By the well known birthday paradox, A and B are likely to have a common
state when their sizes a and b satisfy a x b =~ n. We would like a to be bounded
by the size of commercially available PC hard disks, and b to be bounded by
the number of overlapping prefixes in a typical GSM telephone conversation.
Reasonable bounds on these values (justified later in this paper) are a ~ 23 and
b ~ 222, Their product is 257, which is about 100 times smaller than n = 254, To
make the intersection likely, we either have to increase the storage requirement
from 150 gigabytes to 15 terabytes, or to increase the length of the conversation
from two minutes to three hours. Neither approach seems to be practical, but the
gap is not huge and a relatively modest improvement by two orders of magnitude
is all we need to make it practical.

Key idea 6: Use special states. An important consideration in imple-
menting time-memory tradeoff attacks is that access to disk is about a million
times slower than a computational step, and thus it is crucial to minimize the
number of times we look for data on the hard disk. An old idea due to Ron
Rivest is to keep on the disk only special states which are guaranteed to produce
output bits starting with a particular pattern a of length k, and to access the
disk only when we encounter such a prefix in the data. This reduces the number
b of disk probes by a factor of about 2*¥. The number of points a we have to
memorize remains unchanged, since in the formula a * b =~ n both b and n are
reduced by the same factor 2%. The downside is that we have to work 2* times
harder during the preprocessing stage, since only 2~* of the random states we
try produce outputs with such a k bit prefix. If we try to reduce the number of
disk access steps in the time memory attack on A5/1 from 222 to 26, we have
to increase the preprocessing time by a factor of about 64,000, which makes it
impractically long.

Key idea 7: Special states can be efficiently sampled in A5/1. A
major weakness of A5/1 which we exploit in both attacks is that it is easy
to generate all the states which produce output sequences that start with a
particular k-bit pattern o with & = 16 without trying and discarding other states.
This is due to a poor choice of the clocking taps, which makes the register bits
that affect the clock control and the register bits that affect the output unrelated
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for about 16 clock cycles, so we can choose them independently. This easy access
to special states does not happen in good block ciphers, but can happen in stream
ciphers due to their simpler transition functions. In fact, the maximal value of
k for which special states can be sampled without trial and error can serve as a
new security measure for stream ciphers, which we call its sampling resistance.
As demonstrated in this paper, high values of k can have a big impact on the
efficiency of time-memory tradeoff attacks on such cryptosystems.

Key idea 8: Use biased birthday attacks. The main idea of the first
attack is to consider sets A and B which are not chosen with uniform probability
distribution among all the possible states. Assume that each state s is chosen
for A with probability P4(s), and is chosen for B with probability Pg(s). If the
means of these probability distributions are a/n and b/n, respectively, then the
expected size of A is a, and the expected size of B is b.

The birthday threshold happens when ) P4 (s)Pg(s) = 1. For independent
uniform distributions, this evaluates to the standard condition axb =~ n. However,
in the new attack we choose states for the disk and states in the data with
two non-uniform probability distributions which have strong positive correlation.
This makes our time memory tradeoff much more efficient than the one used by
Golic. This is made possible by the fact that in A5/1, the initial state of each
new frame is rerandomized very frequently with different frame counters.

Key idea 9: Use Hellman’s time-memory tradeoff on a subgraph of
special states. The main idea of the second attack (called the random subgraph
attack) is to make most of the special states accessible by simple computations
from the subset of special states which are actually stored in the hard disk. The
first occurrence of a special state in the data is likely to happen in the first two
seconds of the conversation, and this single occurrence suffices in order to locate
a related special state in the disk even though we are well below the threshold
of either the normal or the biased birthday attack. The attack is based on a new
function f which maps one special state into another special state in an easily
computable way. This f can be viewed as a random function over the subspace
of 2%8 special states, and thus we can use Hellman’s time-memory tradeoff[4] in
order to invert it efficiently. The inverse function enables us to compute special
states from output prefixes even when they are not actually stored on the hard
disk, with various combinations of time T and memory M satisfying M /T = 248.
If we choose M = 236, we get T = 224, and thus we can carry out the attack
in a few minutes, after a 2*8 preprocessing stage which explores the structure of
this function f.

Key idea 10: A5/1 is very efficient on a PC. The A5/1 algorithm was
designed to be efficient in hardware, and its straightforward software implemen-
tation is quite slow. To execute the preprocessing stage, we have to run it on
a distributed network of PC’s up to 24% times, and thus we need an extremely
efficient way to compute the effect of one clock cycle on the three registers.

We exploit the following weakness in the design of A5/1: Each one of the
three shift registers is so small that we can precompute all its possible states,
and keep them in RAM as three cyclic arrays, where successive locations in each



