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Preface

This volume collects the notes of six series of lectures given on the occasion
of the CIME session Representation Theory and Complex Analysis held in
Venice on July 10-17, 2004. We thank Venice International University for its
hospitality at the beautiful venue of San Servolo island.

Our aim in organizing this meeting was to present the audience with a wide
spectrum of recent results on the subject of the title, ranging from topics with
an analytical flavor, to more algebraic or geometric oriented ones, without
neglecting interactions with other domains, such as quantum computing.

Two papers present a general introduction to ideas and properties of analysis
on semi-simple Lie groups and their unitary representations. MICHAEL COWL-
ING presents a panorama of various interactions between representation the-
ory and harmonic analysis on semisimple groups and symmetric spaces. Un-
expected phenomena occur in this context, as for instance the Kunze-Stein
property, that reveal a dramatic difference between these groups and group
actions and the classical amenable group (an extension of abelian groups).
Results of this type are strongly related to the vanishing of coefficients of uni-
tary representations. Complementarily, ALAIN VALETTE recalls the notion
of amenability and investigates its relations with vanishing of coefficients of
unitary representations of semi-simple groups and with ergodic actions. He
applies these ideas to show another surprising property of representations of
semi-simple groups and their lattices, namely Margulis’ super-rigidity.

Three papers deal in full detail with the hard analysis of semisimple group
representations. Ideally, this analysis could be split into representations of
real groups or complex groups, or of algebraic groups over local fields. A
deep account of the interaction between the real and complex world is given
by MASAKI KASHIWARA, whose paper studies the relations between the
representation theory of real semisimple Lie groups and the (microlocal)
geometry of the flag manifolds associated with the corresponding complex
algebraic groups. These results, a considerable part of which are joint work
with W. Schmid, were announced some years ago, and are published here in



VI Preface

complete form for the first time. DAVID VOGAN expresses unitary represen-
tations of real or complex semi-simple groups using tools of complex analysis,
such as minimal globalizations realized on Dolbeault cohomology with com-
pact supports. EDWARD FRENKEL describes the geometric Langlands corre-
spondence for complex algebraic curves, concentrating on the ramified case
where a finite number of regular singular points is allowed.

Finally, NOLAN WALLACH illustrates briefly a surprising application that
could be relevant for the future of computing and its complexity: his paper
studies how representation theory is related to quantum computing, focusing
attention in particular on the study of qubit entanglement.

We wish to thank all the lecturers for the excellence of their live and written
contributions, as well as the many participants from all age ranges and parts
of the world, who created a very pleasant working atmosphere.

Roma and Venezia, November 2006 Enrico Casadio Tarabusi
Andrea D’Agnolo
Massimo Picardello
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Applications of Representation Theory
to Harmonic Analysis of Lie Groups (and Vice
Versa)

Michael Cowling

School of Mathematics, University of New South Wales, UNSW Sydney 2052,
Australia
michaelc@maths.unsw.edu.au

These notes began as lectures that I intended to deliver in Edinburgh in April,
1999. Unfortunately I was not able to leave Australia at the time. Since then
there has been progress on many of the topics, some of which is reported here,
and I have added another lecture, on uniformly bounded representations, so
that these notes are expanded on the original version in several ways.

I have tried to make these notes an understandable introduction to the
subject for mathematicians with little experience of analysis on Lie groups
or Lie theory. I aimed to present a wide panorama of different aspects of
harmonic analysis on semisimple groups and symmetric spaces, and to try
to illuminate some of the links between these aspects; I may well not have
succeeded in this aim. Many readers will find much of what is written here to
be elementary, and others may well disagree with my perspective. I apologise
in advance to both the neophytes for whom my outline is too sketchy and to
the experts for whom these notes are worthless.

I had hoped to produce an extensive bibliography, but I have not found
the time to do so. Consequently I must bear the responsibility for the many
omissions of important references in the subject.

Whoever wishes to delve into this subject more deeply will need a more
complete introduction. There are many possibilities; the books of S. Helga-
son [59, 60, 62] and of A.W. Knapp [71] come to mind immediately as essential
reading.



2 M. Cowling

1 Basic Facts of Harmonic Analysis on Semisimple
Groups and Symmetric Spaces

I will deal with noncompact classical algebraic semisimple Lie groups, such as
SO(p,q), SU(p, q), Sp(p,q), SL(n,R), SL(n,C), and SL(n, H). The definitions
of these may be found in [59, pp. 444-447] or [71, pp. 3-6].

All noncompact algebraic semisimple Lie groups have various standard
subgroups and decompositions. I begin by describing these, then describe
families of unitary representations parametrised by representations of some
of these subgroups. Finally, I discuss the Plancherel formula. The fact that
most of the important representations are parametrised by representations of
subgroups allows arguments involving induction on the rank of the group.

1.1 Structure of Semisimple Lie Algebras

First, fix a Cartan involution 6 of the Lie algebra g of the group G, and write
t and p for the +1 and —1 eigenspaces of . Then £ is a maximal compact
subalgebra of g, and p is a subspace; [X,Y] € € for all X.Y € p. Since # is an
involution, we have the Cartan decomposition of the Lie algebra:

g=tdp.

In this and future formulae about the Lie algebra, & means “vector space
direct sum”. All Cartan involutions are conjugate in the group of Lie algebra
automorphisms of g, which is a finite extension of the group generated by
{expad X : X € g}. The Cartan involution # extends to an automorphism @
of the group G, whose fixed point set is a maximal compact subgroup K of G.

Next choose a maximal subalgebra of p; this is abelian, and is denoted by a.
All such subalgebras are conjugate under K. Let ad(X) denote the derivation
Y +— [X,Y] of g. Then the Killing form B, given by

B(X.Y) = tr(ad(X) ad(Y)) VX.,Y €g,
gives rise to an inner product on a:
(X,Y)p = —-B(X.0Y) VX,Y €g,

which gives rise to a dual inner product, denoted in the same way, on a”,
which in turn extends to a bilinear form on ac, also denoted in the same way.

The third step in the description and construction of the various special
subalgebras of g and corresponding subgroups of G is to decompose g as a
direct sum of root spaces g, and a subalgebra gg. Simultaneously diagonalise
the operators ad(H), for H in a. For a in the real dual a* of a (that is.
a* = Homg(a,R)), define

go={X€g:[H X]=a(H)X VH€a}.



Applications of Representation Theory to Harmonic Analysis 3

For most a in a*, g, = {0}, but when o = 0, then a C g, so go # {0}. There
are finitely many nonzero « in a* for which g, # {0}; these «a are called the
real roots of (g,a), and the set thereof is written Y. This set is a root system,
a highly symmetric subset of a*. Because gg is #-stable,

go=(goNE)®(goNp) =mda,

say, where m is the subalgebra of ¢ of elements which commute with a. Using
the fact that ad(H) is a derivation of g for each H in a, it is easy to check
that

(1.1) [8a: 85] € Bats-

In particular, g is a subalgebra, and g, and gs commute when g,43 = {0}.

Clearly
o)
=009 Y fa

acr

Now order the roots. The hyperplanes {H € a : «(H) = 0}, for a in X,
divide a into finitely many connected open cones, known as Weyl chambers.
Pick one of these (arbitrarily) and fix it; it is called the positive Weyl chamber,
and written at. A root a is now said to be positive or negative as a(H) > 0
or a(H) < 0 for all H in a*. Write ¥ for the set of positive roots; then
Y =Xt uU—(X"). For some roots a and real numbers ¢, ta is also a root; the
possibilities are that t = +1 (this always happens), t = £1/2 or t = +2 (these
last four possibilities may or may not occur). If (1/2)a is not a root, then a
is said to be indivisible; denote by X the set of indivisible positive roots.

We can now define some more important subalgebras: let

n= E o and n= E s P
aeXt aeXt

it is easy to deduce from formula (1.1) that n and n are nilpotent subalgebras
of g. Define p by the formula

p(H) = %tr(a(l(H)Ll) VH € a;

then p = (1/2) > s+ dim(ga) . We now have the ingredients for two more
decompositions of g: the Iwasawa decomposition and the Bruhat decomposi-
tion, written

g=tDadn and g=ndmbadn.

The proof of the second (Bruhat) decomposition is immediate. For the first
(Iwasawa) decomposition, note that if X € g,, then 6X € g_,, so that, if
X € n, then

X=(X+60X)-0X ectdn
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1.2 Decompositions of Semisimple Lie Groups

At the group level, there are similar decompositions (usually known as factori-
sations in undergraduate linear algebra courses). Let K, A, N and N denote
the connected subgroups of G with Lie algebras €, a, n and 1, and let AT and

A" be the subsemigroup exp(at) of A and its closure. Let M and M’ be the
centraliser and normaliser of a in K. Then both M and M’ have m as their
Lie algebra. The group M’ is never connected, while M is connected in some
examples and is not in others. However, M'/M is always finite. In fact, the
adjoint action Ad of M’ on a induces an isomorphism of M’/M with a finite
group of orthogonal transformations of a, generated by reflections. This is the
Weyl group, W (g, a). It acts simply transitively on the space of Weyl cham-
bers, that is, every Weyl chamber is the image of a* under a unique element
of the Weyl group. By duality, this group also acts on a*, and permutes the
roots amongst themselves. Take a representative s, in M’ of each w in the
Weyl group.
At the group level, there are three important decompositions:

(1.2) G=KA'K,

(1.3) G = KAN,

(1.4) G= || MANs,MAN
weW

(this last formula involves a disjoint union). The Cartan decomposition (1.2)
arises from the “polar decomposition” G = K exp(p), in which the map
(k, X) — kexp(X) is a diffeomorphism from K x p onto G; every element
of p is conjugate to an element of at by an element of K. In the Iwasawa de-
composition (1.3), the map (k, a,n) — kan is a diffeomorphism from K x AxN
onto G. In the Bruhat decomposition (1.4), each of the sets M ANs,,MAN
is a submanifold of G, and the |W| submanifolds are pairwise disjoint. There
is a unique longest element w of the Weyl group, which maps a®* to —a™;
the corresponding submanifold of G is open and its complement is a union of
submanifolds of lower dimension. More precisely,

G = |_| soMANs,MAN
weWw
= | | swswsy' NAMs,MAN
weW
L_] SmwNwMAN,
weW

where N, = s;' NS,,NN; each N,, is a Lie subgroup of N, of lower dimension
unless w = w, and the map (7, m,a,n) — nman is a diffeomorphism from
Ny X Mx Ax N onto N,MAN.
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For many purposes it is sufficient to think of the Bruhat decomposition
in the following way: the map (@, m,a,n) — AMAN of N x M x A x N
to G is a diffeomorphism of NM AN onto an open dense subset of G whose
complement is a finite union of lower dimensional submanifolds. In particular,
N MAN is of full measure in G/M AN, equipped with any of the natural
measures. I will use the abusive notation G ~ N M AN to indicate this sort
of “quasi-decomposition”.

There are integral formulae associated with these group decompositions.
In particular, we will use the formula

/GU(I)dI - C/K /a+ /A u(ky exp(H)kz)

[ sinh(a(H)¥™@) dky dH dk,.

aeXr

(1.5)

which relates the Haar measure on G with the Haar measure dk on K and
a weighted variant of Lebesgue measure dH on a®. For the formulae for the
Iwasawa and Bruhat decompositions, see [60, Propositions 1.5.1 and 1.5.21].

1.3 Parabolic Subgroups

The subgroup M AN, often written P, is known as a minimal parabolic sub-
group. Any subgroup P of G containing M AN is known as a parabolic sub-
group; such a group may be decomposed in the form

P, = M; ANy,

where M, O M, A; € A, and N; C N. The group M, is a semisimple
subgroup of GG, and has its own Iwasawa and Bruhat decompositions:

M; = K'A'N'  and M;~N M'A'N'.

In these formulae, K' C K, A' € A, N! C N, M! D M, and N' C N;
moreover, Nl = ON! If a;, a', n; and n! denote the subalgebras of a and
n corresponding to A, A', N; and N', then a = a; @ a! and n = n; & nl.
To each parabolic subgroup P;, we associate p; on a;, defined similarly to p;
more precisely,

1
pr(H) = 5 tr(ad(H)la,)  VH €

The point of this is mainly that the set of all subgroups P; of GG containing
P is well understood: it is a finite lattice with a well determined structure.
We conclude our discussion of the structure of G with one more defini-
tion. A parabolic subgroup P; of G is called cuspidal if M, has a compact
Cartan subgroup, that is, if there is a compact abelian subgroup of K; which
cannot be extended to a larger abelian subgroup of M;. Since M is compact,
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P is automatically cuspidal. It is a deep theorem of Harish-Chandra that
the semisimple groups which have discrete series representations, that is, ir-
reducible unitary representations which are subrepresentations of the regular
representation, are precisely those with compact Cartan subgroups.

1.4 Spaces of Homogeneous Functions on G

For this section, fix a parabolic subgroup M; A; N; of GG. Take an irreducible
unitary representation p of M; and A in the complexification aj of aj (that
is, ajc = Homg(a;,C)). Let 3, denote the Hilbert space on which the rep-
resentation g acts. Consider the vector space V** of all smooth (infinitely
differentiable) 3 ,-valued functions £ on G with the property that

E(xzman) = er—P008 @) () ~Le (),

for all  in G, all m in My, all a in A; and all n in N;. These functions may
also be viewed as functions on G /Ny, since &(xn) = &(x) for all x in G and
n in Ny, or as sections of a vector bundle over G/P;. I shall take the naive
viewpoint that they are functions on G, even though there are often good
geometric reasons for using vector bundle terminology. Write 7/ for the left
translation representation on V#:

[ )€ (@) = E(y'z)  Va,yed.
The inner product on H,, induces a pairing Vi Prd _ PLA =Aie1 . jndeed,
(&(xman), n(xman))
= (c?('i’\/_”')“"g“)/l,(nz)‘]f(:r). e(r=rloga) (1) =1p (7))

_ (W(i/\l—7x—2pl)(10g0)<£(‘)‘). n(x)),

so the complex-valued function x — ({(z), n(z)) indeed satisfies the covariance
o, . o .is ’ -— 5N y
condition characterising V1A ~A+ir1

Lemma 1.1. There is a G-invariant positive linear functional Ip, on V71,
which is unique up to a constant. It may be defined as (a constant multiple
of ) the Haar measure on K,

¢ [ &(k)dk,
K

or as (a constant multiple of ) the Haar measure on N,

¢ | &m)dn.

Ny



