Peter Van Roy (Ed.)

Multiparadigm
Programming
in Mozart/Oz

Second International Conference, MOZ 2004
Charleroi, Belgium, October 2004
Revised Selected and Invited Papers

LNCS 3389

@_ Sprihger

" Peter Van Roy (Ed.)

Multiparadigm
Programming
in Mozart/Oz

Second International Conference, MOZ 2004
Charleroi, Belgium, October 7-8, 2004
Revised Selected and Invited Papers

LA

E200500898

@ Springer

Volume Editor

Peter Van Roy

Université catholique de Louvain

Department of Computing Science and Engineering

Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
E-mail: pvr@info.ucl.ac.be

Library of Congress Control Number: 2005921638

CR Subject Classification (1998): D.3, E3,D.2,D.1,D.4

ISSN 0302-9743
ISBN 3-540-25079-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11398158 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3389

Foreword

To many readers, Mozart/Oz represents a new addition to the pantheon of pro-
gramming systems. One way of evaluating a newcomer is through the eyes of the
classics, for example Kernighan and Pike’s “The Practice of Programming,” a
book that concludes with six “lasting concepts”: simplicity and clarity, generality,
evolution, interfaces, automation, and notation. Kernighan and Pike concentrate
on using standard languages such as C and Java to implement these concepts,
but it is instructive to see how a multiparadigm language such as Oz changes
the outlook.

Oz’s concurrency model yields simplicity and clarity (because Oz makes it
easier to express complex programs with many interacting components), gen-
erality, and better interfaces (because the dataflow model automatically makes
interfaces more lightweight).

Constraint programming in Oz again yields simplicity and clarity (because
the programmer can express what needs to be true rather than the more complex
issue of how to make it true), and offers a powerful mathematical notation that
is difficult to implement on top of languages that do not support it natively.

Mozart’s distributed computing model makes for improved interfaces and
eases the evolution of systems. In my own work, one of the most important
concerns is to be able to quickly scale up a prototype implementation into a large-
scale service that can run reliably on thousands of computers, serving millions
of users. The field of computer science needs more research to discover the best
ways of facilitating this, but Mozart provides one powerful approach.

Altogether, Mozart/Oz helps with all the lasting concepts except automation,
and it plays a particularly strong role in notation, which Kernighan and Pike
point out is an underappreciated area. I believe that providing the right notation
is the most important of the six concepts, one that supports all the others. Multi-
paradigm systems such as Oz provide more choices for notation than single-
paradigm languages.

Going beyond Kernighan and Pike’s six concerns, I recognize three more
concerns that I think are important, and cannot be added on to a language by
writing functions and classes; they must be inherent to the language itself.

The first is the ability to separate concerns, to describe separate aspects of
a program separately. Mozart supports separation of fault tolerance and dis-
tributed computation allocation in an admirable way.

My second concern is security. Sure, you can eliminate a large class of security
holes by replacing the char* datatype with string, but strong security cannot
be guaranteed in a language that is not itself secure.

My third concern is performance. David Moon once said, in words more pithy
than I can recall, that you can abstract anything except performance. That is,
you can add abstraction layers, but you can’t get back sufficient speed if the
underlying language implementation doesn’t provide it. Mozart/Oz has a 10-year

VI Foreword

history of making choices that provide for better performance, thereby making
the system a platform that will rarely run up against fundamental performance
problems.

We all look for tools and ideas to help us become better programmers. Some-
times the most fundamental idea is to pick the right programming environment.

Peter Norvig
Director of Search Quality, Google, Inc.
Coauthor, Artificial Intelligence: A Modern Approach

Preface

Multiparadigm programming, when done well, brings together the best parts of
different programming paradigms in a simple and powerful whole. This allows
the programmer to choose the right concepts for each problem to be solved. This
book gives a snapshot of the work being done with Mozart/Oz, one of today’s
most comprehensive multiparadigm programming systems. Mozart /Oz has been
under development since the early 1990s as a vehicle to support research in pro-
gramming languages, constraint programming, and distributed programming.’
Since then, Mozart/Oz has matured into a production-quality system with an ac-
tive user community. Mozart/Oz consists of the Oz programming language and
its implementation, Mozart. Oz combines the concepts of all major program-
ming paradigms in a simple and harmonious whole. Mozart is a high-quality
open source implementation of Oz that exists for different versions of Windows,
Unix/Linux/Solaris, and Mac OS X.?

This book is an extended version of the proceedings of the 2nd International
Mozart/Oz Conference (MOZ 2004), which was held in Charleroi, Belgium on
October 7 and 8, 2004. MOZ 2004 consisted of 23 technical talks, four tutorials,
and invited talks by Gert Smolka and Mark S. Miller. The slides of all talks
and tutorials are available for downloading at the conference website.® This
book contains all 23 papers presented at the conference, supplemented with
two invited papers written especially for the book. The conference papers were
selected from 28 submissions after a rigorous reviewing process in which most
papers were reviewed by three members of the Program Committee. We were
pleasantly surprised by the high average quality of the submissions.

Mozart/Oz research and development started in the early 1990s as part of
the ACCLAIM project, funded by the European Union. This project led to the
Mozart Consortium, an informal but intense collaboration that initially con-
sisted of the Programming Systems Lab at Saarland University in Saarbriicken,
Germany, the Swedish Institute of Computer Science in Kista, Sweden, and the
Université catholique de Louvain in Louvain-la-Neuve, Belgium. Several other
institutions have since joined this collaboration. Since the publication in March
2004 of the textbook Concepts, Techniques, and Models of Computer Program-
ming by MIT Press, the Mozart/Oz community has grown significantly. As a
result, we are reorganizing the Mozart Consortium to make it more open.

Security and Concurrency

Two important themes in this book are security and concurrency. The book
includes two invited papers on language-based computer security. Computer secu-

! In the early days before the Mozart Consortium the system was called DFKI Oz.
? See www.mozart-oz.org.
3 See www.cetic.be/moz2004.

VIII Preface

rity is a major preoccupation today both in the computer science community and
in general society. While there are many short-term solutions to security problems,
a good long-term solution requires rethinking our programming languages and op-
erating systems. One crucial idea is that languages and operating systems should
thoroughly support the principle of least authority. This support starts from the
user interface and goes all the way down to basic object invocations. With such thor-
ough support, many security problems that are considered difficult today become
much simpler. For example, the so-called trade-off between security and usability
largely goes away. We can have security without compromising usability. The two
invited papers are the beginning of what we hope will become a significant effort
from the Mozart/Oz community to address these issues and propose solutions.

The second important theme of this book is concurrent programming. We
have built Mozart/Oz so that concurrency is both easy to program with and
efficient in execution. Many papers in the book exploit this concurrency sup-
port. Several papers use a multiagent architecture based on message passing.
Other papers use constraint programming, which is implemented with light-
weight threads and declarative concurrency. We find that both message-passing
concurrency and declarative concurrency are much easier to program with than
shared-state concurrency. The same conclusion has been reached independently
by others. Joe Armstrong, the main designer of the Erlang language, has found
that using message-passing concurrency greatly simplifies building software that
does not crash. Doug Barnes and Mark S. Miller, the main designers of the E
language, have found that message-passing concurrency greatly simplifies build-
ing secure distributed systems. E is discussed in both of the invited papers in
this book.

Joe Armstrong has coined the phrase concurrency-oriented programming for
languages like Oz and Erlang that make concurrency both easy and efficient.
We conclude that concurrency-oriented programming will become increasingly
important in the future. This is not just because concurrency is useful for multi-
agent systems and constraint programming. It is really because concurrency
makes it easier to build software that is reliable and secure.

Diversity and Synergy

Classifying the papers in this book according to subject area gives an idea of
the diversity of work going on under the Mozart banner: security and language
design, computer science education, software engineering, human-computer in-
terfaces and the Web, distributed programming, grammars and natural language,
constraint research, and constraint applications. Constraints in Mozart are used
to implement games (Oz Minesweeper), to solve practical problems (reconfigura-
tion of electrical power networks, aircraft sequencing at an airport, timetabling,
etc.), and to do complex symbolic calculation (such as natural language process-
ing and music composition). If you start reading the book knowing only some
of these areas, then I hope that it will encourage you to get involved with the
others. Please do not hesitate to contact the authors of the papers to ask for
software and advice.

Preface IX

The most important strength of Mozart, in my view, is the synergy that comes
from connecting areas that are usually considered as disjoint. The synergy is
strong because the connections are done in a deep way, based on the fundamental
concepts of each area and their formal semantics. It is my hope that this book
will inspire you to build on this synergy to go beyond what has been done
before. Research and development, like many human activities, are limited by
a psychological barrier similar to that which causes sports records to advance
only gradually. It is rare that people step far beyond the boundaries of what
has been done before. One way to break this barrier is to take advantage of
the connections that Mozart offers between different areas. I hope that the wide
variety of examples shown in this book will help you to do that.

In conclusion, I would like to thank all the people who made MOZ 2004 and
this book a reality: the paper authors, the Program Committee members, the
Mozart developers, and, last but not least, the CETIC asbl, who organized the
conference in a professional manner. I thank Peter Norvig of Google, Inc., who
graciously accepted to write the Foreword for this book. And, finally, I give a
special thanks to Donatien Grolaux, the local arrangements chair, for his hard
work in handling all the practical details.

November 2004 Peter Van Roy
Louvain-la-Neuve, Belgium

Organization

MOZ 2004 was organized by CETIC in cooperation with the Université catholique
de Louvain. CETIC asbl is the Centre of Excellence in Information and Com-
munication Technologies, an applied research laboratory based in Charleroi,
Belgium.! CETIC is focused on the fields of software engineering, distributed
computing, and electronic systems. The Université catholique de Louvain was
founded in 1425 and is located in Louvain-la-Neuve, Belgium.

Organizing Committee

Donatien Grolaux, CETIC, Belgium (local arrangements chair)
Bruno Carton, CETIC, Belgium

Pierre Guisset, director, CETIC, Belgium

Peter Van Roy, Université catholique de Louvain, Belgium

Program Committee

Per Brand, Swedish Institute of Computer Science, Sweden
Thorsten Brunklaus, Saarland University, Germany

Raphaél Collet, Université catholique de Louvain, Belgium

Juan F. Diaz, Universidad del Valle, Cali, Colombia

Denys Duchier, INRIA Futurs, Lille, France

Sameh El-Ansary, Swedish Institute of Computer Science, Sweden
Kevin Glynn, Université catholique de Louvain, Belgium

Donatien Grolaux, CETIC, Belgium

Seif Haridi, KTH — Royal Institute of Technology, Sweden

Martin Henz, FriarTuck and the National University of Singapore
Erik Klintskog, Swedish Institute of Computer Science, Sweden
Joachim Niehren, INRIA Futurs, Lille, France

Luc Onana, KTH - Royal Institute of Technology, Sweden
Konstantin Popov, Swedish Institute of Computer Science, Sweden
Mahmoud Rafea, Central Laboratory for Agricultural Expert Systems, Egypt
Juris Reinfelds, New Mexico State University, USA

Andreas Rossberg, Saarland University, Germany

Camilo Rueda, Pontificia Universidad Javeriana, Cali, Colombia
Christian Schulte, KTH — Royal Institute of Technology, Sweden
Gert Smolka, Saarland University, Germany

Fred Spiessens, Université catholique de Louvain, Belgium

Peter Van Roy, Université catholique de Louvain, Belgium (Program Chair)

! See www.cetic.be.

Lecture Notes in Computer Science

For information about Vols. 1-3317

please contact your bookseller or Springer

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.
Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L. Vulkov, J. Wasniewski (Eds.), Numer-
ical Analysis and Its Applications. XIII, 630 pages. 2005.
Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/Oz. XV, 329 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VIII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojtas, M. Bielikové, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3379: M. Hemmyje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.

Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2004.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
XIII, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, I. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3366: 1. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-

mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Pdun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
IX, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.

Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 223 pages. 2005.

Vol. 3359: G. Grieser, Y. Tanaka (Eds.), Intuitive Human
Interfaces for Organizing and Accessing Intellectual As-
sets. XIV, 257 pages. 2005. (Subseries LNAI).

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-

allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3357: H. Handschuh, M.A. Hasan (Eds.), Selected
Areas in Cryptography. X1, 354 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3355: R. Murray-Smith, R. Shorten (Eds.), Switching
and Learning in Feedback Systems. X, 343 pages. 2005.

Vol. 3353: J. Hromkovi¢, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3352: C. Blundo, S. Cimato (Eds.), Security in Com-
munication Networks. XI, 381 pages. 2005.

Vol. 3351: G. Persiano, R. Solis-Oba (Eds.), Approxima-
tion and Online Algorithms. VIII, 295 pages. 2005.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2005.

Vol. 3349: B.M. Chapman (Ed.), Shared Memory Parallel
Programming with Open MP. X, 149 pages. 2005.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. X1V, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3346: R.H. Bordini, M. Dastani, J. Dix, AEF
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 249 pages. 2005. (Subseries LNAI).

Vol. 3345: Y. Cai (Ed.), Ambient Intelligence for Scientific
Discovery. XII, 311 pages. 2005. (Subseries LNAI).

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VIII, 215 pages. 2005.

Vol. 3343: C. Freksa, M. Knauff, B. Krieg-Briickner, B.
Nebel, T. Barkowsky (Eds.), Spatial Cognition IV. Rea-
soning, Action, and Interaction. XIII, 519 pages. 2005.
(Subseries LNAI).

Vol. 3342: E. Sahin, W.M. Spears (Eds.), Swarm Robotics.
IX, 175 pages. 2005.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. XI, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXII, 1272 pages. 2004. (Subseries
LNAI).

Vol. 3338: S.Z. Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. XVIII, 699
pages. 2004.

Vol. 3337: J.M. Barreiro, F. Martin-Sanchez, V. Maojo, F.
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3335: M. Malek, M. ReitenspieB, J. Kaiser (Eds.),
Service Availability. X, 213 pages. 2005.

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. IEu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Collaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I1I. XXXV, 785 pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I1. XXXVI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXXVI, 667 pages. 2004.

Vol. 3330: J. Akiyama, E.T. Baskoro, M. Kano (Eds.),
Combinatorial Geometry and Graph Theory. VIII, 227
pages. 2005.

Vol. 3329: P.J. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. XVI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. XVI, 532 pages. 2004.

Vol. 3327:Y. Shi, W. Xu, Z. Chen (Eds.), Data Mining and
Knowledge Management. XIII, 263 pages. 2005. (Sub-
series LNAI).

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3325: C.H. Lim, M. Yung (Eds.), Information Security
Applications. XI, 472 pages. 2005.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zuni¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. Higher-Level Decision Making. XII,
510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3319: D. Amyot, A.W. Williams (Eds.), System Anal-
ysis and Modeling. XII, 301 pages. 2005.

Vol. 3318: E. Eskin, C. Workman (Eds.), Regulatory Ge-
nomics. VII, 115 pages. 2005. (Subseries LNBI).

Table of Contents

Keynote Talk

The Development of Oz and Mozart
Gert SMOIEG « . o oot e e e 1

Security

The Structure of Authority: Why Security Is Not a Separable Concern
Mark S. Miller, Bill Tulloh, Jonathan S. Shapiro. 2

The Oz-E Project: Design Guidelines for a Secure Multiparadigm

Programming Language
Fred Spiessens, Peter Van Roy ... 21

Computer Science Education

A Program Verification System Based on Oz
Isabelle Dony, Baudouin Le Charliercooiiiinien. 41

Higher Order Programming for Unordered Minds
Juris Reinfeldsoooonnmene e 53

Software Engineering

Compiling Formal Specifications to Oz Programs
T, WaRLS « o o e e e e e e e e e e e e 66

Deriving Acceptance Tests from Goal Requirements
Jean-Francois Molderez, Christophe Ponsard 78

Human-Computer Interfaces and the Web

Using Mozart for Visualizing Agent-Based Simulations
Hala Mostafa, Reem Bahgat . ..o 89

Web Technologies for Mozart Applications
Mahmoud Rafeaoonuiiie i 103

X1V Table of Contents

Overcoming the Multiplicity of Languages and Technologies for
Web-Based Development Using a Multi-paradigm Approach
Sameh El-Ansary, Donatien Grolauz, Peter Van Roy,

Mahmoud Rafeaooooiiomai i

Distributed Programming

P2PS: Peer-to-Peer Development Platform for Mozart

Valentin Mesaros, Bruno Carton, Peter Van Roy

Thread-Based Mobility in Oz

Dragan Havelka, Christian Schulte, Per Brand, Seif Haridi

A Fault Tolerant Abstraction for Transparent Distributed Programming

Donatien Grolauz, Kevin Glynn, Peter Van Roy

Grammars and Natural Language

The CURRENT Platform: Building Conversational Agents in Oz

Torbjérn Lager, Fredrik Kronlid ooiiiiiae.

The Metagrammar Compiler: An NLP Application with a
Multi-paradigm Architecture

Denys Duchier, Joseph Le Rouz, Yannick Parmentier

The XDG Grammar Development Kit

Ralph Debusmann, Denys Duchier, Joachim Niehren

Constraint Research

Solving CSP Including a Universal Quantification

Renaud De Landtsheerttt

Compositional Abstractions for Search Factories

Guido Tack, Didier Le Botlany

Implementing Semiring-Based Constraints Using Mozart
Alberto Delgado, Carlos Alberto Olarte, Jorge Andrés Pérez,

Camilo RUEAQ . . . oo oo e e e et et e

A Mozart Implementation of CP(BioNet)

Grégoire Dooms, Yves Deville, Pierre Dupont

Table of Contents
Constraint Applications

Playing the Minesweeper with Constraints
Baphubl Clollel s ssansms sorer carmmens sasms sasgrememminecncns il

Using Constraint Programming for Reconfiguration of Electrical Power
Distribution Networks
Juan Francisco Diaz, Gustavo Gutierrez, Carlos Alberto Olarte,
Camilo RUCHG . . oo oo oo e e et

Strasheela: Design and Usage of a Music Composition Environment
Based on the Oz Programming Model
Torsten Anders, Christina Anagnostopoulou, Michael Alcorn

Solving the Aircraft Sequencing Problem Using Concurrent Constraint
Programming
Juan Francisco Diaz, Javier Andrés Menaccooovnnnn

The Problem of Assigning Evaluators to the Articles Submitted in
an Academic Event: A Practical Solution Incorporating Constraint
Programming and Heuristics

B. Jesis Aranda, Juan Francisco Diaz, V. James Ortiz

An Interactive Tool for the Controlled Execution of an Automated
Timetabling Constraint Engine

Alberto Delgado, Jorge Andrés Pérez, Gustavo Pabdn,

Rafael Jordan, Juan Francisco Diaz, Camilo Rueda

AUthor INAeX . . . oottt e e e

XV

The Development of Oz and Mozart

Gert Smolka,

Saarland University
Saarbriicken, Germany
smolka@ps.uni-sb.de

In this talk I will review the development of the programming language Oz and
the programming system Mozart. I will discuss where in hindsight I see the
strong and the weak points of the language. Moreover, I will compare Oz with
Alice, a typed functional language we developed after Oz.

The development of Oz started in 1991 at DFKI under my lead. The initial
goal was to advance ideas from constraint and concurrent logic programming
and also from knowledge representation and to develop a practically useful pro-
gramming system. After a number of radical and unforeseen redesigns we arrived
in 1995 at the final base language and a stable implementation (DFKI Oz). In
1996 we founded the Mozart Consortium with SICS and Louvain-la-Neuve. Oz
was extended with support for persistence, distribution and modules and Mozart
1.0 was released in January 1999.

P. Van Roy (Ed.): MOZ 2004, LNCS 3389, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Structure of Authority: Why Security
Is Not a Separable Concern

Mark S. Miller'-?, Bill Tulloh®**, and Jonathan S. Shapiro?

! Hewlett Packard Labs
? Johns Hopkins University
3 George Mason University

Abstract. Common programming practice grants excess authority for
the sake of functionality; programming principles require least authority
for the sake of security. If we practice our principles, we could have both
security and functionality. Treating security as a separate concern has not
succeeded in bridging the gap between principle and practice, because
it operates without knowledge of what constitutes least authority. Only
when requests are made — whether by humans acting through a user
interface, or by one object invoking another — can we determine how
much authority is adequate. Without this knowledge, we must provide
programs with enough authority to do anything they might be requested
to do.

We examine the practice of least authority at four major layers of
abstraction — from humans in an organization down to individual objects
within a programming language. We explain the special role of object-
capability languages — such as E or the proposed Oz-E — in supporting
practical least authority.

1 Excess Authority: The Gateway to Abuse

Software systems today are highly vulnerable to attack. This widespread vul-
nerability can be traced in large part to the excess authority we routinely grant
programs. Virtually every program a user launches is granted the user’s full au-
thority, even a simple game program like Solitaire. All widely-deployed operating
systems today — including Windows, UNIX variants, Macintosh, and PalmOS
— work on this principle. While users need broad authority to accomplish their
various goals, this authority greatly exceeds what any particular program needs
to accomplish its task.

When you run Solitaire, it only needs the authority to draw in its window,
to receive the Ul events you direct at it, and to write into a file you specify
in order to save your score. If you had granted it only this limited authority, a
corrupted Solitaire might be annoying, but not a threat. It may prevent you from

** Bill Tulloh would like to thank the Critical Infrastructure Protection Project at
George Mason University for its financial support of this research.

P. Van Roy (Ed.): MOZ 2004, LNCS 3389, pp. 2-20, 2005.
© Springer-Verlag Berlin Heidelberg 2005

