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Foreword

To many readers, Mozart/Oz represents a new addition to the pantheon of pro-
gramming systems. One way of evaluating a newcomer is through the eyes of the
classics, for example Kernighan and Pike’s “The Practice of Programming,” a
book that concludes with six “lasting concepts”: simplicity and clarity, generality,
evolution, interfaces, automation, and notation. Kernighan and Pike concentrate
on using standard languages such as C and Java to implement these concepts,
but it is instructive to see how a multiparadigm language such as Oz changes
the outlook.

Oz’s concurrency model yields simplicity and clarity (because Oz makes it
easier to express complex programs with many interacting components), gen-
erality, and better interfaces (because the dataflow model automatically makes
interfaces more lightweight).

Constraint programming in Oz again yields simplicity and clarity (because
the programmer can express what needs to be true rather than the more complex
issue of how to make it true), and offers a powerful mathematical notation that
is difficult to implement on top of languages that do not support it natively.

Mozart’s distributed computing model makes for improved interfaces and
eases the evolution of systems. In my own work, one of the most important
concerns is to be able to quickly scale up a prototype implementation into a large-
scale service that can run reliably on thousands of computers, serving millions
of users. The field of computer science needs more research to discover the best
ways of facilitating this, but Mozart provides one powerful approach.

Altogether, Mozart/Oz helps with all the lasting concepts except automation,
and it plays a particularly strong role in notation, which Kernighan and Pike
point out is an underappreciated area. I believe that providing the right notation
is the most important of the six concepts, one that supports all the others. Multi-
paradigm systems such as Oz provide more choices for notation than single-
paradigm languages.

Going beyond Kernighan and Pike’s six concerns, I recognize three more
concerns that I think are important, and cannot be added on to a language by
writing functions and classes; they must be inherent to the language itself.

The first is the ability to separate concerns, to describe separate aspects of
a program separately. Mozart supports separation of fault tolerance and dis-
tributed computation allocation in an admirable way.

My second concern is security. Sure, you can eliminate a large class of security
holes by replacing the char* datatype with string, but strong security cannot
be guaranteed in a language that is not itself secure.

My third concern is performance. David Moon once said, in words more pithy
than I can recall, that you can abstract anything except performance. That is,
you can add abstraction layers, but you can’t get back sufficient speed if the
underlying language implementation doesn’t provide it. Mozart/Oz has a 10-year
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history of making choices that provide for better performance, thereby making
the system a platform that will rarely run up against fundamental performance
problems.

We all look for tools and ideas to help us become better programmers. Some-
times the most fundamental idea is to pick the right programming environment.

Peter Norvig
Director of Search Quality, Google, Inc.
Coauthor, Artificial Intelligence: A Modern Approach



Preface

Multiparadigm programming, when done well, brings together the best parts of
different programming paradigms in a simple and powerful whole. This allows
the programmer to choose the right concepts for each problem to be solved. This
book gives a snapshot of the work being done with Mozart/Oz, one of today’s
most comprehensive multiparadigm programming systems. Mozart /Oz has been
under development since the early 1990s as a vehicle to support research in pro-
gramming languages, constraint programming, and distributed programming.’
Since then, Mozart/Oz has matured into a production-quality system with an ac-
tive user community. Mozart/Oz consists of the Oz programming language and
its implementation, Mozart. Oz combines the concepts of all major program-
ming paradigms in a simple and harmonious whole. Mozart is a high-quality
open source implementation of Oz that exists for different versions of Windows,
Unix/Linux/Solaris, and Mac OS X.?

This book is an extended version of the proceedings of the 2nd International
Mozart/Oz Conference (MOZ 2004), which was held in Charleroi, Belgium on
October 7 and 8, 2004. MOZ 2004 consisted of 23 technical talks, four tutorials,
and invited talks by Gert Smolka and Mark S. Miller. The slides of all talks
and tutorials are available for downloading at the conference website.® This
book contains all 23 papers presented at the conference, supplemented with
two invited papers written especially for the book. The conference papers were
selected from 28 submissions after a rigorous reviewing process in which most
papers were reviewed by three members of the Program Committee. We were
pleasantly surprised by the high average quality of the submissions.

Mozart/Oz research and development started in the early 1990s as part of
the ACCLAIM project, funded by the European Union. This project led to the
Mozart Consortium, an informal but intense collaboration that initially con-
sisted of the Programming Systems Lab at Saarland University in Saarbriicken,
Germany, the Swedish Institute of Computer Science in Kista, Sweden, and the
Université catholique de Louvain in Louvain-la-Neuve, Belgium. Several other
institutions have since joined this collaboration. Since the publication in March
2004 of the textbook Concepts, Techniques, and Models of Computer Program-
ming by MIT Press, the Mozart/Oz community has grown significantly. As a
result, we are reorganizing the Mozart Consortium to make it more open.

Security and Concurrency

Two important themes in this book are security and concurrency. The book
includes two invited papers on language-based computer security. Computer secu-

! In the early days before the Mozart Consortium the system was called DFKI Oz.
? See www.mozart-oz.org.
3 See www.cetic.be/moz2004.
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rity is a major preoccupation today both in the computer science community and
in general society. While there are many short-term solutions to security problems,
a good long-term solution requires rethinking our programming languages and op-
erating systems. One crucial idea is that languages and operating systems should
thoroughly support the principle of least authority. This support starts from the
user interface and goes all the way down to basic object invocations. With such thor-
ough support, many security problems that are considered difficult today become
much simpler. For example, the so-called trade-off between security and usability
largely goes away. We can have security without compromising usability. The two
invited papers are the beginning of what we hope will become a significant effort
from the Mozart/Oz community to address these issues and propose solutions.

The second important theme of this book is concurrent programming. We
have built Mozart/Oz so that concurrency is both easy to program with and
efficient in execution. Many papers in the book exploit this concurrency sup-
port. Several papers use a multiagent architecture based on message passing.
Other papers use constraint programming, which is implemented with light-
weight threads and declarative concurrency. We find that both message-passing
concurrency and declarative concurrency are much easier to program with than
shared-state concurrency. The same conclusion has been reached independently
by others. Joe Armstrong, the main designer of the Erlang language, has found
that using message-passing concurrency greatly simplifies building software that
does not crash. Doug Barnes and Mark S. Miller, the main designers of the E
language, have found that message-passing concurrency greatly simplifies build-
ing secure distributed systems. E is discussed in both of the invited papers in
this book.

Joe Armstrong has coined the phrase concurrency-oriented programming for
languages like Oz and Erlang that make concurrency both easy and efficient.
We conclude that concurrency-oriented programming will become increasingly
important in the future. This is not just because concurrency is useful for multi-
agent systems and constraint programming. It is really because concurrency
makes it easier to build software that is reliable and secure.

Diversity and Synergy

Classifying the papers in this book according to subject area gives an idea of
the diversity of work going on under the Mozart banner: security and language
design, computer science education, software engineering, human-computer in-
terfaces and the Web, distributed programming, grammars and natural language,
constraint research, and constraint applications. Constraints in Mozart are used
to implement games (Oz Minesweeper), to solve practical problems (reconfigura-
tion of electrical power networks, aircraft sequencing at an airport, timetabling,
etc.), and to do complex symbolic calculation (such as natural language process-
ing and music composition). If you start reading the book knowing only some
of these areas, then I hope that it will encourage you to get involved with the
others. Please do not hesitate to contact the authors of the papers to ask for
software and advice.
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The most important strength of Mozart, in my view, is the synergy that comes
from connecting areas that are usually considered as disjoint. The synergy is
strong because the connections are done in a deep way, based on the fundamental
concepts of each area and their formal semantics. It is my hope that this book
will inspire you to build on this synergy to go beyond what has been done
before. Research and development, like many human activities, are limited by
a psychological barrier similar to that which causes sports records to advance
only gradually. It is rare that people step far beyond the boundaries of what
has been done before. One way to break this barrier is to take advantage of
the connections that Mozart offers between different areas. I hope that the wide
variety of examples shown in this book will help you to do that.

In conclusion, I would like to thank all the people who made MOZ 2004 and
this book a reality: the paper authors, the Program Committee members, the
Mozart developers, and, last but not least, the CETIC asbl, who organized the
conference in a professional manner. I thank Peter Norvig of Google, Inc., who
graciously accepted to write the Foreword for this book. And, finally, I give a
special thanks to Donatien Grolaux, the local arrangements chair, for his hard
work in handling all the practical details.

November 2004 Peter Van Roy
Louvain-la-Neuve, Belgium
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The Development of Oz and Mozart

Gert Smolka,

Saarland University
Saarbriicken, Germany
smolka@ps.uni-sb.de

In this talk I will review the development of the programming language Oz and
the programming system Mozart. I will discuss where in hindsight I see the
strong and the weak points of the language. Moreover, I will compare Oz with
Alice, a typed functional language we developed after Oz.

The development of Oz started in 1991 at DFKI under my lead. The initial
goal was to advance ideas from constraint and concurrent logic programming
and also from knowledge representation and to develop a practically useful pro-
gramming system. After a number of radical and unforeseen redesigns we arrived
in 1995 at the final base language and a stable implementation (DFKI Oz). In
1996 we founded the Mozart Consortium with SICS and Louvain-la-Neuve. Oz
was extended with support for persistence, distribution and modules and Mozart
1.0 was released in January 1999.
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The Structure of Authority: Why Security
Is Not a Separable Concern

Mark S. Miller'-?, Bill Tulloh®**, and Jonathan S. Shapiro?

! Hewlett Packard Labs
? Johns Hopkins University
3 George Mason University

Abstract. Common programming practice grants excess authority for
the sake of functionality; programming principles require least authority
for the sake of security. If we practice our principles, we could have both
security and functionality. Treating security as a separate concern has not
succeeded in bridging the gap between principle and practice, because
it operates without knowledge of what constitutes least authority. Only
when requests are made — whether by humans acting through a user
interface, or by one object invoking another — can we determine how
much authority is adequate. Without this knowledge, we must provide
programs with enough authority to do anything they might be requested
to do.

We examine the practice of least authority at four major layers of
abstraction — from humans in an organization down to individual objects
within a programming language. We explain the special role of object-
capability languages — such as E or the proposed Oz-E — in supporting
practical least authority.

1 Excess Authority: The Gateway to Abuse

Software systems today are highly vulnerable to attack. This widespread vul-
nerability can be traced in large part to the excess authority we routinely grant
programs. Virtually every program a user launches is granted the user’s full au-
thority, even a simple game program like Solitaire. All widely-deployed operating
systems today — including Windows, UNIX variants, Macintosh, and PalmOS
— work on this principle. While users need broad authority to accomplish their
various goals, this authority greatly exceeds what any particular program needs
to accomplish its task.

When you run Solitaire, it only needs the authority to draw in its window,
to receive the Ul events you direct at it, and to write into a file you specify
in order to save your score. If you had granted it only this limited authority, a
corrupted Solitaire might be annoying, but not a threat. It may prevent you from

** Bill Tulloh would like to thank the Critical Infrastructure Protection Project at
George Mason University for its financial support of this research.
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