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Preface

A SPECTER is haunting the scientific world—the specter of com-
puters. All the powers of traditional science have entered into a holy
alliance to exorcise this specter: puristic theoreticians and tradition-
alistic experimentalists, editors and referees of prestigious journals,
philosophers of science and mathematicians. Where is a pioneering
computer simulation that has not been decried as unreliable by its
opponents in power?

The Computer Manifesto

As a result of the enormous progress in computer technology made during
the last few decades, computer simulations have become a very powerful and
widely applicable tool in science and engineering. The main purpose of this
book is a comprehensive description of the background and possibilities for the
application of computer simulation techniques in polymer fluid dynamics. Mod-
eling and understanding the flow behavior of polymeric liquids on the kinetic
theory level is not merely a great intellectual challenge but rather a matter of
immense practical importance, for example, in connection with plastics manu-
facture, processing of foods, and movement of biological fluids.

The classical computer simulation technique for static problems in statis-
tical mechanics is the Monte Carlo method developed in the early 1950s. The
name of this method underlines how unusual and strange the idea of using ran-
dom numbers in the exact sciences is at first glance. However, the Monte Carlo
method is a rigorous and efficient means for evaluating moments and static spa-
tial correlation functions for given probability distributions. It is based on the
theory of Markov chains. An ensemble of properly distributed configurations is
created by Monte Carlo moves, where the transition probability from one con-
figuration to another one involves only the ratio of the probabilities of these two
configurations. In statistical mechanics, this method has been most successfully
applied to calculating static equilibrium averages with the Boltzmann distri-
bution. In particular, many static properties of polymer solutions and melts
are most accurately and most reliably known from Monte Carlo simulations.
Since, in this book, we are interested in the dynamics of polymeric liquids, the
Monte Carlo method is here mentioned only for comparison with the stochastic
simulation techniques suited for obtaining dynamic properties.
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What Monte Carlo simulations are to the theory of static polymer proper-
ties, Brownian dynamics simulations and other simulations based on the numer-
tcal integration of stochastic differential equations are to the theory of polymer
dynamics. Both simulation methods are unique tools to obtain exact results.
By the term “exact” it is meant that the only error in the result of a computer
simulation is a statistical error which, in principle, can be made arbitrarily small
by running the corresponding computer program sufficiently long (of course, for
a simulation technique to be useful for practical purposes, “acceptably” small
statistical error bars should be obtained with a “reasonable” amount of com-
puter time; the meaning of the rather vague terms in quotation marks clearly
depends on the particular problem and on the computers available).

Why do stochastic differential equations of motion, which are the starting
point for all the simulations considered in this book, occur very naturally in
the theory of polymer dynamics? In view of the immense number of degrees of
freedom and the wide range of time scales involved in polymer problems, the
derivation of tractable kinetic theory models requires some coarse-grained or
trace description of such problems (e.g., by mechanical bead-rod-spring rather
than atomistic models). The effects of the rapidly fluctuating degrees of freedom
associated with very short length scales are usually taken into account through
random forces which perturb the time evolution of the slower degrees of free-
dom. For that reason, the basic equations for most kinetic theory models are
stochastic in nature. From a more intuitive point of view, thermal noise turns
the equations of motion into stochastic differential equations.

In computer simulations based on the numerical integration of stochastic
differential equations, we construct stochastic trajectories. It is therefore crucial
to give a precise meaning to these random objects, the trajectories of stochas-
tic processes, and not only to introduce their probability distribution, as it is
usually done in the applied sciences and engineering. This is particularly impor-
tant for constructing sophisticated integration schemes, that is, for developing
efficient simulation algorithms. The art of designing efficient algorithms, and
the required mathematical background, are the main subjects of this book.
Moreover, the investigation of stochastic differential equations of motion for the
polymer configurations has additional advantages compared to the usual con-
sideration of partial differential equations for the time-evolution of probability
densities in configuration space: we obtain a more direct understanding of the
polymer dynamics and a better feeling for the degree of complexity of various
types of models.

Brownian dynamics simulations have been applied in the field of polymer
dynamics since the late 1970s. However, the great progress made with numer-
ical methods for stochastic differential equations has not really been exploited
yet in simulating polymer dynamics. Brownian dynamics simulations are not
only a nice toy, and they should not only be used in their most rudimen-
tary form. If the state-of-the-art techniques discussed in this book are used
(such as higher-order integration schemes, predictor-corrector schemes, Runge-
Kutta ideas, implicit and semi-implicit methods, time-step extrapolation, non-
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Gaussian random numbers, shifted random numbers, and variance reduction),
one is now in a position to attack the most important and exciting problems in
polymer dynamics, and some progress in this direction has already been made.
On the one hand, one can work out the universal dynamic properties of long
chain molecules. This expected universality, which is related to the famous self-
similarity and scaling laws for high-molecular-weight polymers, may also serve
as a justification of the simple mechanical models used in polymer kinetic the-
ory. On the other hand, one can simulate extremely large ensembles of molecules
and, in combination with the finite element method, one can then directly solve
complez flow problems with kinetic theory models. The stresses required in the
finite element calculation of the flow field are read off from the molecular con-
figurations. These exciting perspectives are the motivation for attempting a
systematic approach to stochastic simulation techniques in this book.

In order to motivate the development of the theory of stochastic processes
we first sketch the background and framework for our later applications. The
basic tasks and goals of polymer kinetic theory and its relation to polymer fluid
mechanics are hence described in a brief general introduction (Chapter 1). Our
stochastic approach to kinetic theory models is contrasted with the classical
formulation. For developing efficient simulation techniques based on the numer-
ical integration of the stochastic differential equations resulting from polymer
kinetic theory, it is indispensable to have or acquire a sound understanding
of mathematical stochastics, in particular of the subtleties of stochastic calcu-
lus. Stochastic calculus is fundamentally, unavoidably and undeniably different
from deterministic calculus. The most important concepts of stochastics are ex-
plained in Part I of this book (Chapters 2 and 3). Although the development
of stochastics is strictly confined to what is actually needed in this book, a
great variety of concepts and methods of modern stochastics is introduced be-
cause it is found to be very helpful. Therefore, this book not only provides the
background for designing simulation algorithms in polymer kinetic theory but
also gives a multitude of concrete applications of abstract stochastic concepts,
and it may hence also be used as a collection of nontrivial practical examples
and as a challenge for mathematicians. Since the required stochastic concepts
are rather natural and intuitive, an attempt is made to give simple definitions
which are sufficiently precise for the purposes of polymer scientists, hopefully
without too much provoking the mathematicians who are accustomed to even
more rigor. As a stepping-stone to stochastic processes, Part I should be help-
ful in many branches of science and engineering. Part II of the book contains
the application of the theory of stochastic processes to polymer kinetic the-
ory. The power of stochastic simulation techniques is illustrated through many
examples. By applying the theory of stochastic differential equations to dilute
solution models, one is immediately led to Brownian dynamics simulations for
the polymer dynamics (Chapter 4). We then discuss the treatment of models
with constraints by Brownian dynamics simulations (Chapter 5). In the last
chapter, the stochastic concepts are applied to develop stochastic simulation
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algorithms for various reptation models for polymers in concentrated solutions
and melts (Chapter 6).

For optimal benefitting from this book, some mathematical background and,
perhaps even more important, the willingness for a certain mathematical ab-
straction are required. Indispensable is some familiarity with the most elemen-
tary ideas-of set theory. Moreover, knowledge of the basic concepts of linear
algebra (vector spaces, matrices, diagonalization, positive-definiteness) and of
analysis (functions, convergence, calculus in IR¢, Fourier series and transforms,
differential equations) is assumed. A background in differential geometry might
simplify the reading and enhance the understanding of Sect.5.1. Finally, some
knowledge of measure theory, topology, symbolic computation, numerical math-
ematics, and computer science is not assumed, but it would be helpful for un-
derstanding certain details and examples. There are many exercises in which
the reader is supposed to develop computer programs, where all the solutions
are given in FORTRAN.

This book is based on several courses on polymer physics, kinetic theory
and stochastic dynamical systems given over the last seven years to students
of physics and material science. I owe an immeasurable debt of thanks to my
teachers who introduced me in a very enlightening and fascinating manner to
these and related fields: Josef Honerkamp, R. Byron Bird, and Joachim Meifiner.
A number of people have provided me with critical comments and suggestions
for improving the manuscript: Jay D. Schieber, R. Byron Bird, Kathleen Feigl,
Ludger Riischendorf, Marshall Fixman, Manuel Laso, Martin Melchior, Ravi
Prakash, Peter E. Kloeden, and many students. I wish to thank them all for their
help. The assistance of Alain-Sol Sznitman and Hermann Rost in finding the
mathematical background for processes with mean field interactions (Sect. 3.3.4)
and Wesley P. Petersen’s remarks on random number generators have been very
helpful.

Zirich and Rafz, Switzerland Hans Christian Ottinger
September 1995
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Latin Symbols

A, B, C, Aj, B]', Aw Events

(At)sets (Bt)teT

(At)te'm (Bt)tE'IT

A A A,

A
A%
AL

A A A A

A(E)
AX
(At)seT
A,

A*

a, b

C(t, ¢
c, CI: Cg, Cj,

c.

J

Coefficients in the stochastic differential of a real-valued
It6-process [(3.37)]

Coefficients in the stochastic differential of a vector-
valued It6-process [(3.42)]

Drift term or drift vector in a stochastic differential equa-
tion (in general, a function of time and configuration)
Drift term including a spurious drift [(3.132)]

Elements of the Rouse matrix [(4.6)]

Elements of the Zimm matrix [(4.74)]

o-algebras

o-algebra generated by a set of events £ [Definition 2.5
o-algebra induced by a measurable function X [p. 36]
Increasing family of o-algebras (e.g., induced by a
stochastic process)

o-algebra induced by the future of the Wiener process
Completion of a o-algebra A

Limits of intervals, real constants (b also used for finite
extensibility parameter)

Bead radius

Range of the excluded-volume potential [(4.116)]
Contributions to the drift vector A for linear equations
((3.53)]

Eigenvalues of the Rouse matrix [(4.8)]

Eigenvalues of the Zimm matrix [(4.75)]

Noise prefactor in the diffusion term of a stochastic dif-
ferential equation (in general, a function of time and con-
figuration)

Contribution to B for linear equations [(3.53)]

B in a predictor-corrector scheme [(4.111)]

Borel o-algebra on IR (or on IR?) [Example 2.7]

Borel o-algebra on the set of functions RY

Finite extensibility parameter [(4.118)]

Shifted finite extensibility parameter [Exercise 4.32]
Column vector of B (or of a contribution to B for linear
equations)

Elements of the Kramers matrix [(4.26)]

Elements of the modified Kramers matrix [Exercise 4.21]
Set of continuous real functions on T

Cauchy strain tensor [(4.17)]

Real constants
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(54

D, D., Dy, D,
D

d, dl, d"

dp

d

E(t, ¢
E(X|A)
E(X|Y =y)

E, & ,&
e

FtB

FgY
F(r)
F¢, Fy,
F,
F®©
F§m>
Fu
Fi
i
f

Jous i

G(t)

m (n)
g9, g], gt Gt
9, 94, 9, 9x, 9y

Ejka ik Bjks Bjk

sl |

Column vector

Diffusion coefficients

Diffusion matrix

Dimensions

Distance between plates

Differential

Displacement gradient tensor [(4.14)]

Conditional expectation of X given A’ [Definition 2.51]
Conditional expectation of X for given value y of Y
[(2.56)]

Generating systems for o-algebras [Definition 2.5]
2.7182818...

Brownian force, random noise

Effect of metric forces on the relative motion of two beads
[Exercise 5.15]

Force field

Connector force (in spring k)

Potential force on bead p [(4.2)]

External force on bead p

Metric force on bead p [(5.62)]

Smoothed Brownian force on bead y [(4.66)]
Generalized intramolecular forces [(5.24)]

Generalized external forces [(5.25)]

Relative frequency of the occurrence of an event
Correction factors for the bias in variance reduced simu-
lations [(4.36), (4.41)]

Relaxation modulus [(1.15)]

Generic names for functions with values in IR

Generic names for functions with values in IR? (g also
used for gravitational field)

Elements of various modified metric matrices [(5.7), (5.9),
(5.48), (5.49)]; the corresponding symbols without sub-
scripts indicate determinants; the elements of the inverse
matrices are denoted by capital letters, e.g. (~§jk
Hookean spring constant

Hermite polynomials [(3.68)]

Equilibrium-averaged hydrodynamic interactions be-
tween beads p and v [(4.69)]

Tensors associated with hydrodynamic interactions be-
tween beads p and v [(5.37)]

Hydrodynamic-interaction parameters [(4.70), p.251]
Set of indices of the elements contained in an event A
[Example 2.13]

Iterated stochastic integrals [(3.65), (3.115)]
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N, N,

n, n', n;

Tp

N4, B, NAB
n

o(-)

P, P!

P,

PX
P*

F,
P(-|4)

P(X € AlY =vy)

Ptl...tn

P, Py

P(£2)
D, Pt
X

P

Symbols and Notation XVII

Imaginary unit

Probability current [(3.83)]

Summation indices, integers

Averaged structure tensor [Example 5.18]

Boltzmann’s constant

Length of a rod

Contour length of a polymer chain [(6.20)]

Infinitesimal generator of a Markov process [(2.88)]
Weight of bead 4 in the center of resistance [(4.79)]
Mass of a Brownian particle or bead

Molecular weight between entanglements [(6.15)]

Mass of a polymer chain

Matrix

Tensor describing the effect of a flow field on the gener-
alized coordinate Qx [(5.26)]

Elements of a matrix with determinant M [Exercise 5.6]
Ratio of extensional rates [(1.17)]

Number of beads in bead-spring chains

Number of carbon atoms in the polymer backbone
Number of polymer chains in a system

Number of trajectories

Null sets labelled by ¢, y

Integers

Number density of polymers

Number of occurrence of the events A, B, and AN B
Unit normal vector

Term of lower order

Probability measures

Probability for unobserved reflections [(6.18)]
Distribution of the random variable X [(2.27)];

P(X € ) :=PX()

Completion of a probability measure

Measure concentrated at a single point w [Example 2.15]
Conditional probability measure given the event A
[2.15)]

Conditional distribution of X for a given value y of Y
[(2.54)]

Family of finite-dimensional marginal distributions
[(2.72)]

Projection operators [Exercise 5.1, (5.41)]

Set of all subsets of 2

Probability densities

Probability density for PX

Probability density for P,, (6-function)
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Pao
Dred

p(")

P (z|2")
Diy..tn

p

pj

Pn

Q,Q

Th
Ty, Ty

S = (St)te'll’, Sl, S
gj’ SI, S

Sv

S, 8,7 S0

T

TFP

TtLR

T(x)

T

t, 8, ¢, b, 1V
tolock

max

Gaussian probability density with mean a and covariance
matrix © [(2.21)]

Probability density in variance reduced simulations [Ex-
ercise 4.14]

Conditional probability density [(2.59)]

Transition probability density [(2.85)]

Family of finite-dimensional marginal probability densi-
ties

Characteristic function [(2.13)]

Probabilities in discrete spaces

Hydrostatic pressure

Length of Q [Example 4.13]

Generalized coordinates

Predicted value for @ in a predictor-corrector scheme
[(4.33)]

Biased random variables in variance reduced simulations
Connector vectors (or dummy variables) [Fig. 4.1]
Normal modes associated with connector vectors
Arguments of characteristic functions

Gas constant

Root-mean-square radius of gyration

Hydrodynamic radius [(4.91)]

Carlson’s standard elliptic integral of the first kind [Ex-
ample 4.17]

Bead position vectors with respect to the center of mass
[(5.1)]

Length of r

Position vectors

Bead position vectors

Center of mass position vector [Fig.4.1, (5.1)]

Center of resistance position vector [(4.78)]

Auxiliary bead positions in simulation algorithms for
models with constraints

Wiener processes in the interval [0, 1]

Approximations for the process S at discrete times
Area of an oriented plane

Dummy variable in the probability density of S, S,
Absolute temperature

First passage time [(3.82)]

Last reflection time [(3.93)]

Matrix of partial derivatives [Example 3.43]

Time ordering [(3.56)]

Time variables, labels

Time corresponding to a block of time steps

Maximum time argument
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Symbols and Notation XIX

Universal ratios for long polymer chains [(4.92), (4.95),
(4.97), (4.98), (4.99)]

Stochastic process on the unit sphere

Approximations for the process U at discrete times
Dummy variable in the probability density of U

Result of the deterministic time evolution of u [(6.6)]
Volume

External potential

Excluded-volume potential [(4.116)]

Ornstein-Uhlenbeck velocity process

Velocity

Random matrix representmg the antisymmetric part of
the stochastic integral It,t over a short time interval
[(3-121)]

Strength of the excluded-volume potential [(4.116),
(5.83)]

Velocity field

Time dependent velocity vector

Rotational velocity field [Example 4.23]

Velocity perturbation

Wiener process [Example 2.79]

Wiener processes

Sequence of discretizations of the Wiener process
Wiener process in d dimensions [(2.83)]

Wiener processes associated with bead positions

Wiener processes associated with normal modes [(4.10),
(4.11)]

Standard Gaussian random variables [Example 4.17)
Real-valued random variables or stochastic processes, e.g.
X = (X¢)teT (Whenever it is convenient, the time argu-
ment of a stochastic process is given in parentheses rather
than as a subscript)

Vector-valued random variables or stochastic processes

Random variables, stochastic processes at discrete times
Sequence of random variables

Sequence of stochastic processes

Dummy variables in functions or densities

Predicted values in a predictor-corrector scheme [(3.133)]
Auxiliary random variables [(4.115)]

Total effective friction tensor [(5.5)]

cosf
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Greek Symbols

Q, &, O, Oy
ap

Qg

g

’ya 70

Vi
A
Sik

ey

67 el’ eiy ®f7 et

Qtt’ ) ett’

>>XX a3
3

>
®

Hi, U2
By Wy v

X

) AH7 Ah7 /\_17 )‘rd

Mean of a distribution

Strength of Brownian forces [(3.5)]

Exponent characterizing an a-stable distribution
Reduced shear rate [Fig. 4.15]

Shear rate [(1.4)]

Lagrange multipliers

Correlation length parameter [(6.24)]

Differences of variables

Kronecker’s §-symbol

Dirac’s d-function

Unit tensor or unit matrix (with components ;)
Dimensionless parameters in reptation models [(6.5),
(6.30), (6.31)] (e also used for small real numbers)
Auxiliary tensor in variance reduced simulations [(4.52)]
Extensional strain rate [(1.17)]

Friction coefficient

Bead friction tensors

Effective friction tensors [(5.3)]

Modified effective friction tensors [(5.4)]; EW =, & for
isotropic tensors

Viscosity [(1.6)]

Polymer contribution to the viscosity

Solvent viscosity

Trouton viscosity

Intrinsic viscosity [(4.96)]

Variance (special case of ®)

Variance in variance reduced simulations

Eigenvalues of ©¢

Covariance matrices

Covariances of a Gaussian process

Polar angle

Elastic modulus of a rope

Transposed velocity gradient tensor

Perturbed velocity gradient tensor

Time constants

Characteristic time scale associated with the intrinsic vis-
cosity [(4.94)]

Weight tensors [(5.6)]

Extensional viscosities [(1.19), (1.20)]

Summation indices

First passage time distribution for the Wiener process in
[0,1] [(3.91)]

Memory function in reptation models [(6.33)]



Popp(tir1,tn)

(d0)teT

Xa

Uy, Uy
Q2,09
2

8, 2,
(6,.4)

(2. A, P)

Qe

Q(r)

Wo
w, w]-

Subscripts

app

Symbols and Notation XXI1

Exponent characterizing the chain length dependence of
the polymer size in the presence of excluded volume
3.1415926. ..

Conditional distribution of first passage times for the
Wiener process in [0,1] [(3.92)]

Mass density

Polymer mass density

Width of a one-dimensional distribution [(2.12)]

Width of a one-dimensional distribution with infinite
variance

Contribution to o caused by Brownian forces

Rope tension in the reptating-rope model [(6.20)]
Empirical steric factor [(4.119)]

Generalization of o to d dimensions (a matrix with ele-
ments o)

Stress tensor [(1.2)]

Polymer contribution to the stress tensor [(4.18)]
Random variable associated with the polymer contribu-
tion to the stress tensor [(4.29)]

Auxiliary tensors in a reptation model [(6.38)]

Order of convergence [(3.111), (3.118)]

Supporting values [(3.127), (3.129)]

Fundamental matrix of a system of homogeneous linear
differential equations [(3.56), (3.62)]

Auxiliary tensor in variance reduced simulations [(4.52)]
Polar angle

Increasing process [(3.88)]

Indicator function of a set A

Normal stress coefficients [(1.7), (1.8)]

Sure event, set of all possible outcomes

Time-dependent domain of a stochastic process
Elements of orthogonal matrices [(4.7), (4.75)]
Measurable space

Probability space

Orthogonal matrix diagonalizing ©;
Hydrodynamic-interaction tensor [(4.62), (4.67)];

Q, =Q(r,—r,)

Frequency

Possible outcome in a random experiment, w € 2

Approximate quantity (probability density, transition
probability density, or expectation evaluated with an ap-
proximate probability density)



