GRAND UNIFIED THEORIES

Graham G. Ross

GRAND UNIFIED THEORIE

Graham G. Ross

Oxford University

1984

THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC.

Advanced Book Program · Menlo Park, California Reading, Massachusetts · Wokingham, Berkshire, U.K. Amsterdam · Don Mills, Ontario · Sydney To Lilias, Ruth, Gillian and Emma

Sponsoring Editor: Richard W. Mixter

Copyright © 1985 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging in Publication Data

Ross, Graham G.
Grand unified theories.

(Frontiers in physics; v. 60) Bibliography: p. Includes index.

1. Grand unified theories (Nuclear physics)

I. Title. II. Series.

QC794.6.G7R67 1984 530.1'42 84-20329

ISBN 0-8053-6967-8

BCDEFGHIJ-MA-89876

The Benjamin/Cummings Publishing Company, Inc. 2727 Sand Hill Road
Menlo Park, California 94025

GRAND UNIFIED THEORIE

FRONTIERS IN PHYSICS

David Pines, Editor

Volumes of the Series published from 1961 to 1973 are not officially numbered. The parenthetical numbers shown are designed to aid librarians and bibliographers to check the completeness of their holdings.

(1)	N. Bloembergen	Nuclear Magnetic Relaxation: A Reprint Volume, 1961
(2)	G. F. Chew	S-Matrix Theory of Strong Interactions: A Lecture Note and Reprint Volume, 1961
(3)	R. P. Feynman	Quantum Electrodynamics: A Lecture Note and Reprint Volume, 1961 (8th printing, 1983).
(4)	R. P. Feynman	The Theory of Fundamental Processes: A Lecture Note Volume, 1961 (6th printing, 1980)
(5)	L. Van Hove, N. M. Hugenholtz, and L. P. Howland	Problems in Quantum Theory of Many-Particle Systems: A Lecture Note and Reprint Volume, 1961
(6)	D. Pines	The Many-Body Problem: A Lecture Note and Reprint Volume, 1961 (6th printing, 1982)
(7)	H. Frauenfelder	The Mössbauer Effect: A Review—with a Collection of Reprints, 1962
(8)	L. P. Kadanoff and G. Baym	Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium Problems, 1962 (5th printing, 1981)
(9)	G. E. Pake	Paramagnetic Resonance: An Introductory Monograph, 1962 [cr. (42)—2nd edition]
(10)	P. W. Anderson	Concepts in Solids: Lectures on the Theory of Solids, 1963 (5th printing, 1982)
(11)	S. C. Frautschi	Regge Poles and S-Matrix Theory, 1963
(12)	R. Hofstadter	Electron Scattering and Nuclear and Nucleon Structure: A Collection of Reprints with an Introduction, 1963
(13)	A. M. Lane	Nuclear Theory: Pairing Force Correlations to Collective Motion, 1964
(14)	R. Omnès and M. Froissart	Mandelstam Theory and Regge Poles: An Introduction for Experimentalists, 1963
(15)	E. J. Squires	Complex Angular Momenta and Particle Physics: A Lecture Note and Reprint Volume, 1963
(16)	H. L. Frisch and J. L. Lebowitz	The Equilibrium Theory of Classical Fluids: A Lecture Note and Reprint Volume, 1964
(17)	M. Gell-Mann and Y. Ne'eman	The Eightfold Way: (A Review—with a Collection of Reprints), 1964
(18)	M. Jacob and G. F. Chew	Strong-Interaction Physics: A Lecture Note Volume, 1964

此为试读,需要完整PDF请访问: www.ertongbook.com

P. Nozières Theory of Interacting Fermi Systems, 1964

FRONTIERS IN PHYSICS

David	Pines, Editor (continue	ed)
(20)	J. R. Schrieffer	Theory of Superconductivity, 1964 (revised 3rd printing, 1983)
(21)	N. Bloembergen	Nonlinear Optics: A Lecture Note and Reprint Volume, 1965 (4th printing, 1981)
(22)	R. Brout	Phase Transitions, 1965
(23)	I. M. Khalatnikov	An Introduction to the Theory of Superfluidity, 1965
(24)	P. G. deGennes	Superconductivity of Metals and Alloys, 1966
(25)	W. A. Harrison	Pseudopotentials in the Theory of Metals, 1966 (2nd printing, 1971)
(26)	V. Barger and D. Cline	Phenomenological Theories of High Energy Scattering: An Experimental Evaluation, 1967
(27)	P. Choquard	The Anharmonic Crystal, 1967
(28)	T. Loucks	Augmented Plane Wave Method: A Guide to Performing Electronic Structure Calculations—A Lecture Note and Reprint Volume, 1967
(29)	Y. Ne'eman	Algebraic Theory of Particle Physics: Hadron Dynamics in Terms of Unitary Spin Currents, 1967
(30)	S. L. Adler and R. F. Dashen	Current Algebras and Applications to Particle Physics, 1968
(31)	A. B. Migdal	Nuclear Theory: The Quasiparticle Method, 1968
(32)	J. J. J. Kokkedee	The Quark Model, 1969
(33)	A. B. Migdal and V. Krainov	Approximation Methods in Quantum Mechanics, 1969
(34)	R. Z. Sagdeev and A. A. Galeev	Nonlinear Plasma Theory, 1969
(35)	J. Schwinger	Quantum Kinematics and Dynamics, 1970
(36)	R. P. Feynman	Statistical Mechanics: A Set of Lectures, 1972 (7th printing, 1982)
(37)	R. P. Feynman	Photo-Hadron Interactions, 1972
(38)	E. R. Caianiello	Combinatorics and Renormalization in Quantum Field Theory, 1973
(39)	G. B. Field, H. Arp, and J. N. Bahcall	The Redshift Controversy, 1973 (2nd printing, 1976)
(40)	D. Horn and F. Zachariasen	Hadron Physics at Very High Energies, 1973
(41)	S. Ichimaru	Basic Principles of Plasma Physics: A Statistical Approach, 1973 (2nd printing, with revisions, 1980)
(42)	G. E. Pake and T. L. Estle	The Physical Principles of Electron Paramagnetic Resonance, 2nd Edition, completely revised, enlarged, and reset, 1973 [cf. (9)—1st edition]

FRONTIERS IN PHYSICS

David Pines, Editor (continued)

Volumes published from 1974 onward are being numbered as an integral part of the bibliography:

	- 1	
Num	ber	
43	R. C. Davidson	Theory of Nonneutral Plasmas, 1974
44	S. Doniach and E. H. Sondheimer	Green's Functions for Solid State Physicists, 1974 (2nd printing, 1978)
45	P. H. Frampton	Dual Resonance Models, 1974
46	S. K. Ma	Modern Theory of Critical Phenomena, 1976 (5th printing, 1982)
47	D. Forster	Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, 1975 (3rd printing, 1983)
48	A. B. Migdal	Qualitative Methods in Quantum Theory, 1977
49	S. W. Lovesey	Condensed Matter Physics: Dynamic Correlations, 1980
50	L. D. Faddeev and A. A. Slavnov	Gauge Fields: Introduction to Quantum Theory, 1980
51	P. Ramond	Field Theory: A Modern Primer, 1981 (4th printing, 1983)
52	R. A. Broglia and A. Winther	Heavy Ion Reactions: Lecture Notes Vol. I: Elastic and Inelastic Reactions, 1981
53	R. A. Broglia and A. Winther	Heavy Ion Reactions: Lecture Notes Vol. II, in preparation
54	Howard Georgi	Lie Algebras in Particle Physics: From Isospin to Unified Theories, 1982
5 5	P. W. Anderson	Basic Notions of Condensed Matter Physics, 1983
56	Chris Quigg	Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 1983
57	S. I. Pekar	Crystal Optics and Additional Light Waves, 1983
58	S. J. Gates, M. T. Grisaru, M. Roček, and W. Siegel	Superspace or One Thousand and One Lessons in Supersymmetry, 1983
59	R. N. Cahn	Semi-Simple Lie Algebras and Their Representations
60	G. G. Ross	Grand Unified Theories

Other numbers in preparation

EDITOR'S FOREWORD

The problem of communicating in a coherent fashion recent developments in the most exciting and active fields of physics seems particularly pressing today. The enormous growth in the number of physicists has tended to make the familiar channels of communication considerably less effective. It has become increasingly difficult for experts in a given field to keep up with the current literature; the novice can only be confused. What is needed is both a consistent account of a field and the presentation of a definite "point of view" concerning it. Formal monographs cannot meet such a need in a rapidly developing field, and, perhaps more important, the review article seems to have fallen into disfavor. Indeed, it would seem that the people most actively engaged in developing a given field are the people least likely to write at length about it.

FRONTIERS IN PHYSICS has been conceived in an effort to improve the situation in several ways. Leading physicists today frequently give a series of lectures, a graduate seminar, or a graduate course in their special fields of interest. Such lectures serve to summarize the present status of a rapidly developing field and may well constitute the only coherent account available at the time. Often, notes on lectures exist (prepared by the lecturer himself, by graduate students, or by postdoctoral fellows) and are distributed in mimeographed form on a limited basis. One of the principal purposes of the FRONTIERS IN PHYSICS series is to make such notes available to a wider audience of physicists.

It should be emphasized that lecture notes are necessarily rough and informal, both in style and content; and those in

the series will prove no exception. This is as it should be. The point of the series is to offer new, rapid, more informal, and, it is hoped, more effective ways for physicists to teach one another. The point is lost if only elegant notes qualify.

The publication of collections of reprints of recent.

articles in very active fields of physics will improve communication. Such collections are themselves useful to people working in the field. The value of the reprints will, however be enhanced if the collection is accompanied by an introduction of moderate length which will serve to tie the collection together and, necessarily, constitute a brief survey of the present status of the field. Again, it is appropriate that such an introduction be informal, in keeping with the active character of the field.

The informal monograph, representing an intermediate step between lecture notes and formal monographs, offers an author the opportunity to present his views of a field which has developed to the point where a summation might prove extraordinarily fruitful but a formal monograph might not be feasible or desirable.

Contemporary classics constitute a particularly valuable approach to the teaching and learning of physics today. Here one thinks of fields that lie at the heart of much of present-day research, but whose essentials are by now well understood, such as quantum electrodynamics or magnetic resonance. In such fields some of the best pedagogical material is not readily available, either because it consists of papers long out of print or lectures that have never been published.

The above words, written in 1961, continue to be timely. The search for a grand unified theory of the strong, weak, electromagnetic, and gravitational interactions, based on nonabelian guage theories and their supersymmetric generalizations, is one of the great intellectual endeavors of our time. In this volume, based on his lectures at Oxford over the last few years, Dr. Ross describes in some detail the ideas which have been explored and their application to cosmology. I share his hope that his book will instruct new workers in the field, taking them from Maxwell's equations and the ideas of symmetries to the latest grand unified models. It is a pleasure to welcome Dr. Ross to the ranks of contributors to FRONTIERS IN PHYSICS.

Urbana, Illinois August, 1984

David Pines

PREFACE.

The last fifteen years have seen remarkable advances in our knowledge and understanding of the fundamental forces of nature. This has led to the development of successful theories for the strong and weak interactions to complement Quantum Electrodynamics, the theory of the electromagnetic force. The similarity of these theories, which are all based on local gauge field theories, has led to the development of Grand Unified theories in which the strong, electromagnetic and weak interactions are different aspects of a single underlying gauge theory.

These notes, based on lectures presented at Oxford over the last few years, introduce the ideas of local gauge field theories and the construction of realistic models. The perturbative structure of the theory is discussed, paying particular attention to the calculation of higher order radiative corrections, a topic not usually covered in introductory texts, but of central importance in the extension of the standard model. We then turn to the construction of

Grand Unified theories and their phenomenological implications. Since the subject is still under development, emphasis is placed on a discussion of the various ideas that have been explored, such as technicolour and supersymmetry, rather than a review of specific models. However the material is covered in sufficient detail to enable the reader to follow each step.

Finally we review the interplay between cosmology and grand unification, an area of intense activity in which the field theory ideas of Grand Unification have shed new light on such problems as the production of a baryon number excess. A bibliography is included to augment the discussion in the text and to provide source material to the reader for further research.

I am grateful to my colleagues at Oxford, at the Rutherford Appleton Laboratory, at Cal. Tech. and at CERN for sharing their insights with me. Several people have helped by reading parts of the manuscript, in particular Guy Coughlan, Graham Blair and Stephen Wilkinson. A special vote of thanks is due to Pierre Ramond for enlightening discussions and detailed comments on the manuscript. Finally, I would like to thank Linda Clarke for cheerfully coping with the typing of this text.

G. Ross, Oxford 1984.

CONTENTS

1.	INIKU	DOUGITON	
	1.1	Symmetries	1
	1.2	Quantum Field Theories	4
	1.3	The elementary particles	8
	1.4	The interactions	12
	1.5	Weak-electromagnetic unification	13
	1.6	The strong interactions	15
	1.7 1.8	Grand unification	. 18
		The hierarchy problem	20
	1.9	Supersymmetry and supergravity	22
		and the same of	
2.	GAUGE	FIELD THEORIES	
	2.1	Symmetries and fields	28
	2.2	The Action principle	30
	2.3	The charged scalar field	31
	2.4	The fermion field	36
	2.5	Electromagnetism and the principle of local	
		gauge invariance	37
	2.6	Maxwell's equations	41
	2.7	The photon progatator	42
	2.8	Yang-Mills gauge field theories	45
	2.9	Examples of Yang-Mills gauge theories	51
	2.10	Spontaneous symmetry breakdown	59
	2.11	The Nambu-Goldstone theorem	61
	2.12	The Higgs mechanism	66
	2.13	Renormalisability	70
	2.14	Υ ₅ anomalies	73
3. QUANTUM CHROMODYNAMICS - A INTERACTIONS		UM CHROMODYNAMICS - A THEORY FOR THE STRONG	
	INIEK	ACTIONS	
	3.1	Symmetries of the strong interactions	84
	3.2	Quarks as real states	86
	3.3	QCD	87
	3.4	Why QCD?	89
	3.5	Perturbative aspects of QCD	92
	3.6	Renormalisation of the gluon propagator	93
	3.7	A sample calculation in QCD	99
	3.8	The renormalisation group - summation of all :	log
		terms	103

4.		imesVU(1): A THEORY FOR THE WEAK AND ELECTROMAGNETI RACTIONS	С
	4.1	The vector bosons	112
	4.2	The fermion sector	113
	4.3	Helicity states	113
	4.4	Parity	115
	4.5	Charge conjugation	115
	4.6	Fermion masses	116
	4.7	Fermion assignments in the electroweak model	117
	4.8	Spontaneous symmetry breakdown	121
	4.9	Fermion mass generation	123
	4.10		126
	4.11		128
	4.12	Perturbative calculations in the electroweak model	100
	4.13		130
	4.14	The state of the s	149
	4.15		151
	4.16		152 156
5.	5.1 5.2 5.3 5.4 5.5 5.6 5.7	The choice of the gauge group The generators and gauge bosons of SU(5) The choice of fermion representations Fermion interactions in SU(5) Spontaneous symmetry breakdown Fermion masses Mixing angles	161 162 166 173 177 183 187
6.	THE (CLASSIC PREDICTIONS OF GRAND UNIFIED THEORIES	
	6.1	Gauge couplings	193
	6.2	Detailed predictions for M _X and $\sin^2\theta_W$	196
	6.3	Quark and lepton masses	204
	6.4	Nucleon decay in minimal SU(5)	209
	6.5	Proton lifetime	212
	6.6	Summation of logarithmic terms via the	
	6.7	renormalisation group	216
	6.8	Neutrino masses	219
	6.9	The invisible axion	222

10.4

10.5

10.6

problem

raham	G. Ros	ss Grand Unified Theories Contents	
7.	BEYON	D SU(5)	
		Prospects	229
	7.2	SO(2n), $SO(2n+1)$	235
	7.3	Family groups	248
	7.4	Other groups	251
	7.5	Phenomenology of general grand unified theories	
	7.6	Predictions for $\sin^2\theta_W$, M_X and quark masses	258
	7.7	ΔB=ΔL=1. Nucleon decay in general GUTs	261
	7.8	Processes mediated by higher dimension	
		operators	268
8.	TECHN	ICOLOUR THEORIES	
•	8.1	Dynamical generation of gauge boson masses	275
	8.2	Extended technicolour and fermion masses	281
	8.3	Pseudo-Goldstone bosons	284
	8.4	Flavour changing neutral currents	287
	8.5	Prospects for technicolour	289
9.	SUPERS	SYMMETRY	
	9.1	Why supersymmetry?	292
	9.2	Representations of supersymmetry	296
	9.3	N=1 supersymmetric theories	302
	9.4	Chiral representation of the supersymmetry	
	0 5	algebra	302
	9.5	The chiral superfield	305
	9.6	Superspace and superfields	308
	9.7	Chiral superfields again	309
	9.9		310
	9.10	The scalar Lagrangian	314
	9.11	The vector Lagrangian	319
	9.12	Gauge invariant interactions	322
	9.13	Non Abelian supersymmetric gauge theories Symmetries of the superpotential	325
	9.14	Local supersymmetry	326 328
	2.47	accar supersymmetry	320
10.	SUPERS	SYMMETRIC MODELS	
	10.1	A supersymmetric version of the standard model	334
	10.2	The SU(3)×SU(2)×U(1) supersymmetric Lagrangian	339
	10.3	Supersymmetric SU(5) - An example of a SUSYGUT	342

The hierarchy problem in supersymmetry

Supersymmetry breaking and the hierarchy

346

348

352

Masses and mass splittings

- (000	+	0	n	+-	-
	lon		-	11	L	-

Grand Unified Theories

Graham	G.	Ross

	10.7	Supersymmetry breaking	353
		D type breaking	357
		F type breaking	358
	10.10	Supersymmetry breaking in realistic models	362
	10.11	F type models with Yukawa couplings	365
		F type models with gauge coupling - the	
		geometric hierarchy	366
	10.13	Models with supersymmetry breaking communicated	
×		by gravity	370
	10.14	Multiplet splitting	375
	10.15	Electroweak breaking and the problem of mass	
		scales	378
		A decision of the second secon	
11.	PHENON	MENOLOGY OF SUPERSYMMETRY AND SUSYGUTS	
			388
	11.1	Mass and coupling constant renormalisation	
	11.2	Baryon and lepton number violation in SUSY GUTs	395
	11.3	Nucleon decay in SUSY GUTS	400
	11.4	Nucleon decay in minimal SU(5) SUSY GUT	400
	11.5	Proton decay in non-minimal models	406
	11.6		408
	11.7		411
	11.8	AND THE STATE OF T	412
	11.9		414
		Gauginos and Higgsinos Higgs scalars	419
	11.11	niggs scalars	417
12.	COSMO	LOGY AND GUTS	
12.	COSMO	LOGI AND GOLD	
	12.1	Cosmology and Grand Unified Theories	423
	12.2	The expanding Universe	425
	12.3	He production	430
	12.4	Bounds on the number of neutrinos	434
	12.5	Cosmological bounds on heavy neutrinos,	
		gravitinos etc	435
	12.6		438
	12.7	The cosmological constant	444
	12.8	The inflationary universe	447
	12.9	Field theory models for inflationary cosmology	453

1. INTRODUCTION

The development in our understanding of the fundamental forces rests to a large extent on our understanding of the underlying symmetries of nature. Coupled to this has been the development of quantum field theories, in which the fundamental states are described by fields whose interactions obey the underlying symmetries. Taken together these ideas have led to remarkably successful field theories for the strong, weak and electromagetic interactions. They have also led to a class of theory in which the strong, weak and electromagnetic interactions are combined in a "Grand Unified" theory, each force being just a different facet of the same underlying interactions. The unification has been extended to include the fourth force, gravity, in the "Super Grand Unified" theories. In this introductory chapter we will review the conceptual basis for these unified field theories.

1.1 Symmetries

In 1905 Einstein identified the invariance group of space and time, a development that led to Einstein's theory of

gravity. Later new symmetries, such as isospin, acting on internal quantum numbers, and having nothing to do with space and time, were identified. These symmetries are not exact and govern only the strong interactions. Their identification allowed for a classification and simplification of strong interaction phenomena. Other symmetries, such as parity, charge conjugation and strangeness were found to be violated only by the weak interactions. It seemed that different interactions were governed by different symmetries and unification of the fundamental forces did not appear likely.

Initially it was thought the new internal symmetries should be global symmetries, not depending on the position in space and time. However it has long been known that the laws of electromagnetism possess another local symmetry in which charge is locally conserved, meaning that charged fields have a phase that varies freely from point to point in space and time. Indeed, Maxwells equations may be derived starting only with this local gauge symmetry. In 1954 Yang and Mills and Shaw proposed that local symmetries be extended from this U(1) group of phase rotations to non-Abelian symmetries, of the type that had been proposed as symmetries for the strong However, this generalisation led to interactions. prediction that there should be new vector bosons, like the photon, which should be massless, apparently quite in contradiction with observation. Subsequent developments led to an understanding of how approximate symmetries, with massive vector bosons, may have a fundamental basis. rests on the idea of "spontaneous" symmetry breaking in which the Hamiltonian and commutation relations of a quantum system may possess an exact symmetry, but this symmetry may turn out not to be a symmetry of the vacuum, and so the physical state: need not manifestly exhibit the symmetry.