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PREFACE TO THE FIRST EDITION

The creation of set theory can be traced back to the work of XIXth
“century mathematicians who tried to find a firm foundation for calculus.
While the early contributors to the subject (Bolzano, Du Bois Reymond,
Dedekind) were ‘concerned with sets of numbers or of functions, the
proper founder of set theory, Georg Cantor, made a decisive step and
started an investigation of sets with arbitrary elements. The series of
articles published by him in the years 1871-1883 contains an almost
modern exposition of the theory of cardinals and of ordered and well-
ordered sets. That step toward generalizations which Cantor made
was a difficult one was witnessed by various contradictions (antinomies
of set theory) discovered in set theory by various authors around 1900.
The crisis created by these antinomies was overcome by Zermelo who
formulated in 1904-1908 the first system of axioms of set theory. His
axioms were sufficient to obtain all mathematically important results
of set theory and at the same time did not allow the reconstruction of
any known antinomy. Close ties between set theory and philosophy of
mathematics date back to discussions concerning the nature of an-
tinomies and the axiomatization of set theory. The fundamental prob-
lems of philosophy of mathematics such as the meaning of existence in
mathematics, axiomatics versus description of reality, the need of con-
sistency proofs and means admissible in such proofs were never better
illustrated than in these discussions.

After an initial period of distrust the newly created set theory made
a triumphal inroad in all fields of mathematics. Its influence on math-
ematics of the present century is clearly visible in the choice of modern
problems and in the way these problems are solved. Applications of
set theory are thus immense. But set theory developed also problems
of its own. These problems and their solutions represent what is known
as abstract set theory. Its achievements are rather modest in comparison
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to the applications of set theoretical methods in other branches of math-
ematics, some of which owe their very existence to set theory. Still, abstract
set theory is a well-established part of mathematics and the knowledge
of its basic notions is required from every mathematician.

Recent years saw a stormy.advance in foundations of set theory.
After breaking through discoveries of Godel in 1940 who showed relative
consistency of various set-theoretical hypotheses the recent works of
Cohen allowed him and his successors to solve most problems of inde-
pendence of these hypotheses while at the same time the works of Tarski
showed how deeply can we delve in the domain of inaccessible cardinals
whose magnitude surpasses all imagination. These recent works will
certainly influence the future thinking on the philosophical foundations
of mathematics.

The present book arose from a mimeographed text of Kuratowski
from 1921 and from an enlarged edition prepared jointly by the two
authors in 1951. As a glance on the list of contents will show, we intended
to present the basic results of abstract set theory in the traditional order
which goes back still to Cantor: algebra of sets, theory of cardinals,
ordering and well-ordering of sets. We lay more stress on applications
than it is usually done in texts of abstract set theory. The main field
in which we illustrate set-theoretical methods is general topology. We
also included a chapter on Borel, analytical and projective sets. The
exposition is based on axioms which are essentially the ones of Zermelo-
Fraenkel. We tried to present the proofs of all theorems even of the
very trivial ones in such a way that the reader feels convinced that they
are entirely based on the axioms. This accounts for some pedantry in
notation and in the actual writing of several formulae which could be
dispensed with if we did not wish to put the finger on axioms which we
use in proofs. In some examples we use notions which are commonly
known but which were not defined in our book by means of the primitive
terms of our system. These examples are marked by the sign #.

In order to illustrate the role of the axiom of choice we marked by
a small circle ° all theorems in which this axiom is used. There is in the
book a brief account of the continuum hypothesis and a chapter on
inaccessible cardinals. These topics deserve a more thorough presen-
tation which however we could not include because of lack of space.
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Also the last chapter which deals with the descriptive set theory is
meant to be just an introduction to the subject.

Several colleagues helped us with the preparation of the text. Dr M.
Maczynski translated the main part of the book and Mr R. Kowalsky
collaborated with him in this difficult task. Professor J. Lo§ wrote a pen-
etrating appraisal of the manuscript of the 1951 edition as well as of ihe
present one. His remarks and criticism allowed us to eliminate many
errors and inaccuracies. Mr W. Marek and Mr K. Wisniewski read
the manuscript and the galley proofs and helped us in improving our
text. To all these persons we express our deep gratitude.

KAZIMIERZ KURATOWSKI
ANDRZEJ MOSTOWSKI



PREFACE TO THE SECOND EDITION

The second edition of our Set Theory differs essentially from the
first—which was translated from the Polish edition (by Professor M. Ma-
czyfiski)}—by the extension of its content. Our aim was to introduce
the reader to some chapters of set theory which actually seem to be
especially attractive and are cultivated by a large and still growing
number of mathematicians.

The major changes introduced in the new edition are:

1. We wrote a new chapter on trees containing also a short introduc-
tion to the partition calculus and we completely rewrote Chapter 9 of
the old edition dealing with inaccessible cardinals.

2. We introduced four chapters on descriptive set theory which re-
place Chapter 10 of the old edition. These four chapters (which were
written by K. Kuratowski) contain

a. A short survey of the theory of Borel sets and Borel-measurable
functions, preceded by a fairly general theory of L-measurable functions
(where L is an arbitrary o-lattice).

b. An insight into the theory of Souslin (analytic) sets and—more
generally—of projective sets.

c. Some results on measurable selectors, mostly found within the
last few years.

Some results presented in Chapters 11-14 are new as far as we know,
whereas the first 10 chapters contain only results which are known
from the literature.

We consistently tried to remain within the framework of the classical
set theory. For this reason we did not include into our book any of
the exciting recent results in whose proofs one uses model theoretical
methods or notions borrowed from advanced parts of mathematical
logic. See Mostowski [1].

We welcome this opportunity to express our gratitude—in addition
to persons mentioned in the Preface to the first edition—to our younger
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colleagues, J. Kaniewski, W. Marek, R. Pol, and P. Zbierski who read
the manuscript, engaged in numerous discussions and provided many
suggestions and corrections.

It is also our pleasure to express our thanks to Dr B. S. Niven from
the White Agricultural Research Institute, South Australia, for correct-
ing our English and to Mrs D. Wojciechowska for her help in preparing
our manuscript.

Finally our thanks go to the North-Holland Publishing Company,
as well as to the Polish Scientific Publisher$ and personally to
Mrs Z. Osek, Mr W. Muszyniski and Mr J. Panz for their assistance
in the publication of this book.

KAzIMIERZ KURATOWSKI
ANDRZEJ MOSTOWSKI
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CHAPTER 1

ALGEBRA OF SETS

§ 1. Propositional calculus

Mathematical reasoning in set theory may be presented in a very
clear form by making use of logical symbols and by basing argu-
ments on the laws of logic formulated in terms of such symbols.
In this section we shall present some basic principles of logic in
order to refer to them later in this chapter and in the remainder of
the book.

We shall designate arbitrary sentences by the letters p, ¢, r, ... We
assume that all of the sentences to be considered are either true or
false. Since we consider only sentences of mathematics, we shall be
dealing with sentences for which the above assumption is applicable.

From two arbitrary sentences, p and ¢, we can form a new sentence
by applying to p and to g any one of the connectives:

and, or, if...then..., if and only if.

The sentence p and g we write in symbols pAg. The sentence
pAq is called the conjunction or the logical product of the sentences
p and ¢ which are the components of the conjunction. The conjunc-
tion pAgq is true when both components are true. On the other hand,
if any one of the components is false then the conjunction is false.

The sentence p or g, which we write symbolically pvg, is called
the disjunction or the logical sum of the sentences p and g (the com-
ponents of the disjunction). The disjunction is true if either of the
components is true and is false only when both components are
false.

The sentence if p then q is called the implication of q by p, where p
is called the antecedent and q the consequent of the implication. Instead
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of writing if p then g we write p —» g. An implication is false if the
consequent is false and the antecedent true. In all other cases the
implication is true.

If the implication p — ¢ is true we say that g follows from p; if
we know that the sentence p is true we may conclude that the sentence
g is also true.

In ordinary language the sense of the expression “if ..., then ...”
does not entirely coincide with the meaning given above. However,
in mathematics the use of such a definition as we have given is
useful.

The sentence p if and only if q is called the equivalence of the
two component sentences p and g and is written p = g. This sentence
is true provided p and g have the same logical value; that is, either
both are true or both are false. If p is true and g false, or if p is false
and g true, then the equivalence p = ¢q is false.

The equivalence p = ¢ can also be defined by the conjunction

(P—>nr(g—p).

The sentence it is not true that p we call the negation of p and we
write ~]p. The negation ~|p is true when p is false and false when p
is true. Hence ~]p has the logical value opposite to that of p.

We shall denote an arbitrary true sentence by V and an arbitrary
false sentence by F; for instance, we may choose for V the sentence
2-2 =4, and for F the sentence 2-2 = 5.

Using the symbols F and ¥V, we can write the definitions of truth
and falsity for conjunction, disjunction, implication, equivalence and
negation in the form of the following true equivalences:

() FAF=F, FAV =F, VAF =F, VAV =V,
(2) FVvF=F, FvV =V, VVvF=V, Vvv =V,
B F-F=V, (F-V)y=v, (V-oF)=F F¥-V)=V,
@4 (F=F)=V, (F=V)=F W=F)=F ¥=V=V,
O V\F=V, TIW=F.

Logical laws or tautologies are those expressions built up from the
letters p, q, r, ... and the connectives A, v, —, =, ~ | which have the
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property that no matter how we replace the letters p, g, r, ... by arbi-
trary sentences (true or false) the entire expression itself is always true.

The truth or falsity of a sentence built up by means of connec-
tives from the sentences p, g, r, ... does not depend upon the meaning
of the sentences p, g, r, ... but only upon their logical values. Thus
we can test whether an expression is a logical law by applying the
following method: in place of the letters p, ¢, r, ... we substitute the
values F and V in every possible manner. Then using equations (D-(5)
we calculate the logical value of the expression for each one of these
substitutions. If this value is always true, then the expression is a
tautology.

Example. The expression (pAg) — (pvr) is a tautology. It contains
three variables p, ¢ and r. Thus we must make a total of eight sub-
stitutions, since for each variable we may substitute either F or V.
If, for example, for each letter we subtitute F, then we obtain
(FAF)— (FVF), and by (1) and (2) we obtain F — F, namely V.
Similarly, the value of the expression (pAg) — (pVvr) is true in each
of the remaining seven cases.

Below we give several of the most important logical laws together
with names for them. Checking that they are indeed logical laws is
an exercise which may be left to the reader.

(pvg) = (qvp) law of commutativity of disjunction,
[(pvevri=[pvigvr)] law of associativity of disjunction,
(pAg) = (gnp) law of commutativity of conjunction,
[pA(@Aar)] = [(pAg)Ar] law of associativity of conjunction,

[pAa(gvr)l = [(pAg)v(pAr)] first distributive law,
[pv(@ar)=[(pvagA(pvr)] second distributive law,
(pvp)=p, (pAp)=p laws of tautology,
(PAF)=F, (pAV)=p
(pvF)=p, (vV)=V
In these laws the far reaching analogy between propositional cal-
culus and ordinary arithmetic is made apparent. The major differ-

ences occur in the second distributive law and in the laws of taut-
ology and absorption. In particular, the laws of tautology show that

laws of absorption.



4 I. ALGEBRA OF SETS

in the propositional calculus with logical addition and multiplication
we need use neither coefficients nor exponents.

[(p—=>g@Ar(@—>r)]— (p—r) law of the hypothetical syllogism,

(pvTip =V law of excluded middle,
(pA"Ip) = F law of contradiction,
p="1"1p law of double negation,

1eve) =(Clpa g
“1prg) = (Tlpv )
(r—=q9) =(lg— "1p) law of contraposition,
(-9 =(Clpvy),

F-p, p-p p-V.

de Morgan’s laws,

Throughout this book whenever we shall write an expression using
logical symbols, we shall tacitly state that the expression is true.
Remarks either preceding or following such an expression will always
refer to a proof of its validity.

§2. Sets and operations on sets

The basic notion of set theory is the concept of set. This basic con-
cept is, in turn, a product of historical evolution. Originally the theory
of sets made use of an intuitive concept of set, characteristic of the
so-called “naive” set theory. At that time the word “set” had the same
imprecisely defined meaning as in everyday language. Suc¢h, in par-
ticular, was the concept of set held by Cantor,!) the creator of set
theory.

Such a view was untenable, as in certain cases the intuitive concept
proved to be unreliable. In Chapter II, §2 we shall deal with the
antinomies of set theory, i.e. with the apparent contradictions which
appeared at a certain stage in the development of the theory and

1) Georg Cantor (1845-1918) to whom we owe the creation of set theory was
a German mathematician, professor at the University of Halle. He published his
basic papers on set theory in “Mathematische Annalen” during the years 1879-1893.
These papers were reprinted in Cantor [7]; this volume contains also a biography
of Cantor written by E. Zermelo.
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were due to the vagueness of intuition associated with the concept
of set in certain more complicated cases. In the course of the polemic
which arose over the antinomies it became obvious that different
mathematicians had different concept of sets. As a result it became
impossible to base set theory on intuition.

In the present book we shall present set theory as an axiomatic
system. In geometry we do not examine directly the meaning of the
terms “point”, “line”, “plane” or other “primitive terms”, but from
a well-defined system of axioms we deduce all the theorems of geom-
etry without resorting to the intuitive meaning of the primitive terms.
Similarly, we shall base set theory on a system of axioms from which
we shall obtain theorems by deduction. Although the axioms have
their source in the intuitive concept of sets, the use of the axiomatic
method ensures that the intuitive content of the word “set” plays
no part in proofs of theorems or in definitions of set theoretical
concepts.

Sometimes we shall illustrate set theory with examples furnished by
other branches of mathematics. This illustrative material involving
axioms not belonging to the axiom system of set theory will be dis-
tinguished by the sign # placed at the beginning and at the end of
the text.

The primitive notions of set theory are “set” and the relation “to be
an element of . Instead of x is a set we shall write Z(x), and instead of
x is an element of y we shall write x € y.!) The negation of the formula
x € y will be written as x non € y, or x ¢ y or ~|(x € y). To simplify the
notation we shall use capital letters to denote sets; thus if a formula
involves a capital letter, say A, then it is tacitly assumed that A is a set.
Later on we shall introduce yet another primitive notion: xTRy (x is
the relational type of y). We shall discuss it in Chapter II.

For the present we assume four axioms:

I. AXIOM OF EXTENSIONALITY: If the sets A and B have the same el-
ements then they are identical.

') The symbol € is derived from the Greek letter epsilon. The usc of this letter
for the elementhood relation was introduced by Peano [2] who selected it as the
abbreviation of the Greek word “to be” (éot{). Many other mathematical and
logical symbols also originated with Peano.



