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PREFACE

In these lecture notes we deal with the integral equation

u(x) = [ K(x,y)uly)dy +f(x), xeG, (0.1)
G

where GCR"™ is an open bounded region or, more generally, an open bounded
set (possibly non-connected). The functions f and K are assumed to be
smooth but K may have a weak singularity on the diagonal:

IK(x,y)| < b(1+|x-y|™"), b=const, v<n. (0.2)

The main problems of interest to us are the following:

— the smoothness of the exact solution to equation (0.1);

— discretization methods for equation (0.1).

Usually, the derivatives of the solution to a weakly singular integral
equation have singularities near the boundary JdG of the domain of
integration GCR™. A unified description of the singularities in all possible
cases is complicated, and up to now this problem has not been solved
fully. In Chapter 3 we give estimates which are sharp in many practically
interesting cases. The behaviour of the tangential derivatives thereby turns
out to be less singular than the behaviour of the normal derivatives. All this
information is used designing approximate methods for integral equation
(0.1). We restrict ourselves to collocation and related schemes, thoroughly
examining simplest schemes based on the piecewise constant approximation
of the solution and the superconvergence phenomenon at the collocation
points (Chapters 5 and 6). In the case where GCR™ is a parallelepided,
higher order collocation methods on graded grids are also considered
(Chapter 7); again the superconvergence at the collocation points is
examined.

Technically, our convergence analysis is based on the discrete conver-
gence theory outlined in Chapter 4 of the book. This short chapter can be
used for a first acquaintance with the theory for linear equations u=Tu+f;
for eigenvalue problems and nonlinear equations, the results are presented
without proofs.

In Chapter 8, some of the main results of Chapters 3 and 5-7 are extended

to nonlinear integral equations.



Vil

Examples of (linear) integral equations (0.1),(0.2) can be found in
radiation transfer theory (see Section 1); some interior-exterior boundary
value problems too have their most natural formulations as integral
equations of type (0.1), (0.2). Perhaps some readers will be disappointed to
find that our treatment concerns only integral equations on an open set
GCR™. In practice, there is a great interest also in the boundary integral

equations

u(x) = [ K(x,y)uly)ds, + f(x), xedG. (0.3)
oG

Such equations arise, for instance, in solving the Dirichlet or Neumann
problem for the Laplace equation (see e.g. Mikhlin (1970) or Atkinson (1990)).
A natural question of whether the results of the lecture book can be
extended or modified to boundary integral equations then arises. The answer
is non-unique. If 0G is smooth then the solution of the boundary integral
equation is smooth too, and the results concerning the collocation and
related methods can even be strengthened and the arguments can be
simplified. On the other hand, if 0G is non-smooth then the standard
boundary integral operators, e.g. the ones corresponding to the Laplace
equation, are non-compact, and our arguments fail fully. The case of an
integral equation on a smooth (relative) region I'C9G with a smooth
(relative) boundary oI' seems to be the most adequate case that can be
treated by our arguments. But this assertion may be considered only as a
conjecture not discussed anywhere.

We use only a minimum of references in the main text. Nevertheless,
an extended commented bibliography is added. Young mathematicians
looking for problems to work on will find a list of unsolved problems too.
The lectures are based on the author's recent publications (see Vainikko
(1990a,b), (1991a,b), (1992a,b), Vainikko and Pedas (1990)) but actually the
results were elaborated during a much longer time lecturing at University
of Tartu, the Technical University of Chemnitz and Colorado State University.
A significant milestone for us was the booklet by Vainikko, Pedas and Uba
(1984) concerning the one-dimensional case (n=1). In the present lectures,

we always assume that n22.
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1. SOME PROBLEMS LEADING TO MULTIDIMENSIONAL
WEAKLY SINGULAR INTEGRAL EQUATIONS

In this chapter we present two examples on problems of mathematical
physics which can be reformulated as multidimensional weakly singular
integral equations — an interior-exterior boundary value problem and a

radiation transfer problem.

1.1. An interior-exterior problem. Let GCR", n22, be an open bounded
set with piecewise smooth boundary dG and let a and f be given real or
complex valued bounded continuous functions on G (we write a,fe BC(G)).
Consider the following problem: find a function ¢eC*(R™)NH7,_(R™)
such that

Ap(x) = a(x)ep(x) + f(x) , x€G, (1.1)
A¢e(x) =0, xeR™\G (1.2)
whereby, in case n23,
p(x)>0 as |x|2>ow (1.3)
or, in case n=2,
le(x)| is bounded as |x|—> . (1.3")

Here the following standard notations are adopted: C'(R™) is the space
of continuously differentiable functions on R™; H%_ _(R™) is the space
of functions on R™ which have locally square-integrable (generalized)
derivatives up to the second order; A is the Laplace operator,
DN = 3%p/ox? +...+ 3%9/dx,Z. Note that the condition ¢ € C'(R™) contains a
requirement that ¢ itself as well its first normal derivative have equal
boundary values as x approaches oG from inside and outside of G.

1.2. A physical background (n=2). Crouseix and Descloux (1988) describe
amathematical model of the electromagnetic casting process. When the ingot
is sufficiently long, the electromagnetic part of the problem reduces to the

search of a complex potential ¢ in R?, of class C*, satisfying the conditions
Ap+2ia®(p+cy) = 0 in G (k=1,....,1),

1
£e=0 in R’\G, szulck.



Here GkCIRz, 1<k<l, are the cross-sections in the x,,x, plane of cylindrical
electric conductors in which a current with angular freguency  runs;
20®=y,sw is a real constant where y, is the magnetic permeability of the
air and s the conductivity; i=Y-1 is the imaginary unit and cy's are given
complex constants. Thus, we have a special case of problem (1.1), (1.2) with
a(x)=-2ia®, f(x)=-21a’c) for xeGyp (k=1,...,1).

An instruction from this background is that we ought to avoid an
assumption about the connectivity of GCR™ when problem (1.1),(1.2) will
be discussed.

1.3. Integral equation formulation (n23). We look for a solution of
problem (1.1)-(1.3) in the form of the Newton potential (see Bers et al. (1964))

o(x)= cp [Ix-yI"™ Pu(y)dy, xeR", (1.4)
G

where ¢, =1/((n-2)0,,), on=F(n/2)/(2n"/2) is the area of the unit sphere in
R™ and ue BC(G) is the density which we have to determine. Condition (1.3)
is automatically fulfilled. First derivatives of ¢ can be found differentiating
(1.4) under the integral sign, the result is a weakly singular integral again,

and it is easy to see that ¢ € C*(R™). Further, it is well known that
(x) u(x), x€G,
Ap(x) = —
? 0, xeR™\G

(in the sense of distributions as well in the sense of pointwise equalities).
We see that (1.2) is fulfilled, too. A consequence of A¢@eL?*(R™) is that
«pELzloc(IR") (together with (1.3) we have even @€ H?*(R™)). Condition (1.1)
takes the form of the following integral equation to determine u:

u(x) = -cpalx) [Ix-yI"™ Pu(y)dy + f(x), xeG. (1.5)
G

Thus, to solve problem (1.1)-(1.3), we have to solve integral equation (1.5)
and then apply formula (1.4). Actually, (1.4) is needed only for x€R™\G;
for x€e G we have from (1.4) and (1.5)

e(x) = (u(x)-f(x))/a(x).

Let us make sure that we exhaust all solutions of problem (1.1)-(1.3)
in this way. Indeed, let ¢eC*(R")NH%,.(R™) be an arbitrary solution of
(1.1)-(1.3). Denote

u(x) = Ap(x) = a(x)e(x) + f(x), xEeG,

S5
>
l

= ¢(x) +cq f Ix-yl= """ Pu(y)dy . xeR™
G



It is clear that ueBC(G), ¢ C*(R®)NHY,.(R™). In addition , AY(x)=0 for
x€G and xeR™\G, i.e. AP=0 a.e. in R™. Together with the smoothness
of ¢ (see above), this means that A¢=0 in R™ in the sense of distributions.
Now, using the hypoellipticity property of the Laplace operator (see e.g.
Yosida (1965) or Lions and Magenes (1968)), we obtain that ¢ € C”(R™) and
AP(x)=0 for all xeR™. Further, ¢(x)>0 as |x|>x, hence §(x)=0 for all
x€R™, i.e. ¢ has a representation (1.4) with u(x)=A¢(x), x€G, q.e.d.

Problem (1.1) - (1.3) is uniquely solvable if and only if integral equation
(1.5) has a unique solution u€ BC(G). This occurs if and only if the corres-
ponding homogeneous integral equation u=Tu has in BC(G) only the trivial
solution. Note that operator T: BC(G) > BC(G) is compact (a proof in a more
general setting is given in Section 2.3)

1.4. Integral equation formulation (n=2). We look for a solution of
problem (1.1), (1.2), (1.3') in the form

e(x) = (2m)™* [loglx-ylu(y)dy + B, xeR?, (1.6)
G
where we have to determine the density u€e BC(G) and the constant B.

Again, ¢€C'(R?), A@(x)= u(x) for x€G, A¢e(x)=0 for xeR*\G, (1.2) is
fulfilled and (1.1) takes the form

u(x) = (2n)"a(x)floglx—ylu(y)dy + Ba(x) + f(x), xeG. 1.7)
G

Condition (1.3') is fulfilled if and only if

Jux)dx = o. (1.8)
G

Indeed, rewrite (1.6) in the form

e(x) = (2n)™! flog |)|(-y| u(y)dy + (2n)" ' loglx| fu(y)dy +B.
G x| G

Here the first integral tends to 0 as |x|>® since log(lx-y|/Ix|)=>0
uniformly with respect to y€G. Hence ¢(x) is bounded as |[x|=>® if and
only if (1.8) holds.

Thus, to solve (1.1), (1.2),(1.3'), we have to find a pair ue BC(G),BeC
(or R) from equations (1.7), (1.8) and then apply (1.6). For x€G we have
e(x) = (u(x)-f(x))/a(x) again, thus actually (1.6) is needed for xeR*\G
only. It is easy to check again that we exhaust in this way all solutions of
problem (1.1),(1.2),(1.3").

Problem (1.1), (1.2),(1.3') is uniquely solvable if and only if problem
(1.7),(1.8) is uniquely solvable. Problem (1.7),(1.8) preserves the Fredholm
property — for its unique solvability, it is necessary and sufficient that the



corresponding homogeneous problem

u(x) = (Zn)_‘a(x)floglx—ylu(y)dy + Ba(x), xE€G,
G

fu(x)dx =0
G
has in BC(G)xC only the trivial solution u=0, B=0. We state a simple
sufficient condition for the unique solvability:
a,1/a€BC(G), Ima # 0 and is sign constant in G (1.9)

where Ima is the imaginary part of a. Indeed, let ueBC(G), BeC be a
solution of the homogeneous problem. Then we have the equalities

Iu(x > a(x) = 71F floglx—Y|u(Y)dY +B. xe€gG,
a(x)| G

July)dy = 0
G

where a is the complex conjugate to a. Taking the scalar product of the first
equality with u and using the second one we obtain

f'ﬂiﬁl-: a(x)dx = (Au,u) 1.10)
¢ la(x)|

where the number

(Au,u) = (2n)* fflog]x—ylu(y)ﬁ(x)dydx
GG

is real due to the symmetry of the kernel log|x-y|. Since Ima(x) > 0 or
Im a(x) < 0 on G, (1.10) is possible in case u=0 only. Now we see that =0,
too, q.e.d.

Note that for the physical problem considered in Section 1.2, condition
(1.9) is fulfilled.

A further sufficient condition for the unique solvability of the problem
(1.7),(1.8) can be formulated as follows: (i) the homogeneous integral

equation

u(x) = (2n) *a(x) floglx-ylu(y)dy. x€G,
G

has only the trivial solution u=0; (ii) the solution u, of the integral equation

u(x) = (2n)—’a(x)floglx—ylu(y)dy + a(x), x€G,
G

satisfies the condition fua(x)dx = 0.
G



If conditions (i) and (ii) are fulfilled then the unique solution of
problem (1.7),(1.8) is given by

B = —fuf(x)dx/fua(x)dx ,ulx) = up(x)+Buy(x)
G G
where ug is the solution of the integral equation

u(x) = (Zn)"a(x)floglx—ylu(y)dy + f(x), xeG.
G

Thus, problem (1.7),(1.8) can be reduced to two standard integral equations
with the logarithmic kernel. But numerically one usually prefers to solve
(1.7),(1.8) directly.

1.5. Radiation transfer problem. Let Gc R® be an open bounded convex
region, G its boundary and

S ={seR> |s|=(s2+s2+s2)"/? =1}

Sy
the unit sphere in R®. For x€0G, let us denote by
= {se8: IA>0: x+XAs€G}
the set of directions falling into G; if x is a smoothness point of G then
we simply have
S, = {s€eS: s-v(x)>0}
where v(x) is the unit inner normal to dG at x€0G.

A standard radiation transfer problem reads as follows: find a function
¢: GxS > R, (the intensity of the radiation) such that

3
Z 5; C)(P)xx :8) +o(x)p(x,s) = q:—i{x—)fg(x,s,s‘)ap(x,s')ds' +f(x,s) (x€G,seS),(1.11)
IS s

p(x,s) = po(x,s) (x€dG, seS,). (1.12)

Here o: G—->R, (the extinction coefficient), c,: G->R, (the scattering
coefficient), g: GxSxS->R, (the phase function of scattering), f: GxS>R,
(the source function) and ¢,: {(x,s): x€dG, se€S_ }2>R, (the inflow radiation

intensity) are given functions whereby

J (x,s,s')ds" =
S

0o(x)s0(x), glx,s,s’) = g(x,s',s),

-:-l._.

(we shall refer to those as "physical conditions”). For a more detailed
exposition we refer to Chandrasekhar (1950). We have adopted a terminology
used in the atmospheric optics. In the theory of nuclear reactors, (1.11),



(1.12) occurs as a main problem, too, but the terminology is slightly
different (see e.g. Case and Zweifel (1967) or Marchuk and Lebedev (1984)).

1.6. Integral equation formulation of the radiation transfer problem.
Let us split (1.11) into two equations:
3

by af)(xx,s) +o(x)e(x,s) = u(x,s) (xe€G, se8), (1.11)
1=1 )
u(x,s) = %)fg(x.s.s')cp(x.s')ds' +f(x,s) (xe€G,seSs). 1.11)
S
. /’/_\~\
/,/"/ Y
< }//‘/:?s
\ j'\‘ G -
i N Fig. 1.1

One can solve (1.11'), (1.12) explicitly:

p(x,s) = ¢o(xg,s)exp(-1(x,xg))
o
+ f u(x+Xs,s)exp(-1(x,x+xs))d)x (xe€G, se8§) (1.13)
-lx-xgl
where x is the point on oG which lies in the direction -s from x (see Figure
1.1) and

1

1(x,y) = Ix-yl [ o(tx+(1-t)y)dt (1.14)
o]

is the optical distance between points x,y€G.
Indeed, let us write down that ¢ satisfies (1.11') at the points of the
straight line x+Xs (-|x-x /<A <0):

Z jc)(p(x+)\s s) + o(x+As) (x+rs,s) = u(x+Xis,s).
()x,
Since

= %\ p(x+\s,s),

i dp(x+1s,s)
= r)x,

we obtain the linear ordinary differential equation of the first order

(%tp(x+)\s.s)+o(x+)\s)cp(x*>\s.s) = u(x+Xs,s), -lx-xglsxso0,



