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Preface.

The first aim of this book is to present in a coherent way some of the fundamental results and
recent research on nonlinear evolution operators and semigroups. The second aim is to show how
to apply these abstract results to unify the treatment of several types of partial differential equations
arising in physics (the heat equation, wave equation, Schrodinger equation, and so on).

The motivation of this theory is clearly pointed out in the following quotation from: Autumn
Course on Semigroups, Theory and Applications, held at the International Centre For Theoreti-
cal Physics, Trieste (Italy), 12 November - 14 December 1984 (Brezis-Crandall- Kappel, Directors).

"The last two decades have witnessed a tremendous use of semigroups and evolution equations
techniques in solving problems related to PDE and FDE. This allows the treatment of PDE and FDE
as suitable ODE in infinite dimensional Banach spaces. This method has considerably simplified
and clarified the the proofs, and has unified the treatment of several different classes of differential
equations. It has solved many problems that had been left open by previously known methods, and
has been very succesful in dealing with discontinuous data and regularity."

Chapter 1 deals with the construction and main properties of nonlinear evolution operator
U(t,s) associated with a class of nonlinear (possible multivalued) operators A(¢) with time de-
pendent domain, satisfying Hypotheses H(2.1) and H(2.2) in Section 2. We also say that U (¢, s)
is associated with the nonautonomous differential equation (inclusion) z'(t) € A(t)z(t). In the
convergence of DS -approximate solutions (i.e., in the construction of U (¢, s) ) the fundamental es-
timate is given by (2.40), essentially due to Kobayashi, Kobayasi and Oharu. Among other general
results, we mention Theorem 5.1 which gives a characterization of the compactness of evolution
operators.

Note that U(t,s) associated with the equation z'(t) € A(t)z(t) allows a unifying treatment
of the existence, uniqueness and behaviour of the various types of solutions to the Cauchy problem
for this equation.

Chapter 2 is devoted to nonlinear semigroups S4(t) which are generated by the DS -limit
solutions associated with the dissipative operator A. In the case A - m-dissipative, S4(t) is
given by the exponential formula of Crandall-Liggett. We say also that S4(t) is generated by A
via the exponential formula. The semigroup approach is important in the study of the solutions of
the autonomous differential equation z' € Az, which includes several different classes of PDE
and FDE.

In order to avoid duplication and to reduce the length of this work, we have tried to make (as
much as possible) the autonomous case as a special subcase of the time-dependent case (this was
also a suggestion of the referee). Of course this is an economic way to present such a theory, but
not the simplest one. For the sake of simplicity, the reader may start with the autonomous case.

In the theory of the generation of nonlinear semigroups, the fundamental estimate (given by
(1.16)) due to Kobayashi, is derived from (2.40) in Chapter 1, i.e., from nonautonomous case.

In Chapter 3, one applies the results of Chapters 1 and 2, both to a class of multivalued evolution
equations and to some partial differential equations modelling physical phenomena.

Most of the results here are presented for the first time in a book (e.g., Brezis’ characteriza-
tion of nonlinear compact semigroups in Chapter 2, the theory of nonlinear evolution operators
in Chapter 1 and most of the material in Chapter 3. Some of the results are very recent and not
yet published (e.g., the characterization of compactness of evolution operators given by the author,
the characterization of compactness of a linear semigroup solely in terms of the resolvent of its
infinitesimal generator due to Vrabie and so on).
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Chapter 1
Nonlinear Evolution Operators

The aim of this chapter is to study the nonlinear evolution operators
U(t,s) associated with a class of nonlinear possible multivalued ope-

rators with time-dependent domain.

.Preliminaries. Discrete Schemes (DS)

Let us consider the differential inclusion

u'(t) € A(t)u(t), s <t <T (1.1)

with initial conditions

u(s) = x , x € D(A(s)), (1.1)
O @]

X
where A(t) : D(A(t)) €X =+ 27 is a time-dependent (possible multivalued)
nonlinear operator acting in the real Banach space X with the time-de-

pendent domain D(A(t)). (The equation (1.1) is said to be nonautonomous).

The conditions we shall impose on A(t) (see (2.11)), allow even the
closure D(A(t)) of D(A(t)) to be time-dependent. We shall see that this

is the case in some concrete situations (see Ch. 3, §2).

The key of the construction of U(t,s) is the introduction of the "DS-

approximate solution® un as the following step function

xn, for t = tn = §
o o
u (t) = (1.2)
n n n
x , for t é]tk_l,tk ],
where n is a positive integer (neN), k :o,l,...,Nn and t: els,T]

erD(A(tE)) are defined in that follows. (Note that DS is the abbre-

viation of ‘Discrete Schemes').

Let s, T eR with s <« T and erD(A(s)). Suppose that there is a partition

P of [s,T]



=S =ttty Lt
with
n n n n
= < < .. < <T = .
S to tl tN -1 T tN (1.3)
n n
and
dn =  max <t2_t2—1) + 0 as n +o wdn: % (1.4)
1§}<5Nn

(see (2.36))

Assume, in addition, that there are some elements XE eD(A(tE)) <X and

p: e X such that

o
n k k-1 n n,,n
~ - K= 148sism5N 1«5
Yy = _n by eA(tk)fk, #25 N ( )
k k-1 v
xne:D(A(s)), e x as n-» (1.86)
o o o
Nn n . .n n
bn = ; (tk—tk 1) Ika|1» ocas n-+ o (I
L K=1
. . n . n . n
In the situation N = « , t =T = 1lim t, and u (T) = 1lim x
n N k n k

n K +w W o
We shall give conditions that guarantee the existence of such elements
with the properties (1.3)-(1.7), having the additional property that the
corresponding "DS-approximate solution" un is convergent to a continuous

function u = u(t;s,xo) (called DS-limit solution to (1.1)+(1.1)').

Moreover, we will preove that u is well-defined (i.e. every DS-approxi-
mate solution u has the same limit u) and that the operator U(t,s):

D(A(s)) - D(A(t)) defined by

U(t,s)x = u(t;s,x ) = 1lim u (t),x e D(A(s)),s<t<T (1.8)
o o e n o - =



is an evolution operator (as in Section 3). Of course, we shall study
the relationship of U with the "strong" solution to (1.1)+(1.1')(Section
3).

Various applications to some partial differential equations will be
given in Chapter 3.

The DS-1imit solution u

u(t;s,x ) = lim u (t) (1.9)
o n
N +wo
is also called '"generalized solution'", or "mild sclution" (or still

"weak solution") to (1.1)+(1.1').

The unigueness of the mild solution is provable by means of the "Be-
nilan uniqueness theorem" (Section 3).

Roughly speaking, the existence of "DS-approximate solutions" is

guaranteed by the '"Range condition"

R(I-hA(t+h)) > D(A(t)), o< h < h_, s< t<l (1.10)

for some small ho> 0. In this case (1.5) holds with pi = 0 €X.
As we shall see in Section 7, a strictly more general condition than
(1.10) is the following "tangential condition"

lim = d[x;R(I-hA(t+h))] = o, ¥ xeD(A{t)), s <t < T, (1.11)

hvo

| A

where d(x;B] stands for the distance from xeX to the set B <X.

It is easy to check that

[d(x;B] - dly;B] | < llx=yll , x,yeX, (1.11)°

where |r| is the absolute value of reR and |/x]|| is the norm of xeX.
Another important "tangential condition" with significant geometric

intterpretation is the following one

lim = d[x+hA(t)x;D(A(t+h))] = O, ¥ x eD(A(t)), s<t<T, (1.12)

h+O

01—

(where A(t) : D(A(t)) cX » X is now supposed to be single-valued).
The relationship between (1.11) and (1.12) will be pointed out later
(see § 7). Now, we only mention that if D(A(t)) is closed and if (t,x)

+ A(t)x is continuous, then (1.12) implies (1.11).



The convergence of the sequence of DS-approximate solutions un is
guaranteed by a condition on the t-dependence of A(t) (which implies
that for each t, A(t) is dissipative). Such a condition is given in the

next section. See (H.(2.1)).

Remark 1.1. The condition (1.11) (and respectively (1.12)) is important
in applications. Thus, in the case of the (PDE) (2.1) in Chapter 3, (1.10)
is not satisfied, but (1.11) holds. The condition (1.12) plays also a
crucial role in the theory of the flow-invariance of a set with respect

to a differential equation (Cf. Pavel [15]).

§2. The convergence of DS-approximate solutions.

2.1. The time dependence of A(t).

For the sake of selfcontainment we start with the introduction of the

functions
’ 2 2
<y,Xx> = lim lixrhy Il - [1x] , x,yeX (2.1)
5 2h
hyo
; x+hyli-
<y,x> = lim |l x+hy | "XH, x,yeX (2.2)
+ h
hyo
2 2
hyll - |
<y,Xx>. = lim L x+hy | L]l , X,yeX (2.3)
i 2h
hio
| hy || -
ey e = lam sl - fimll o o (2.4)
= h
h+o

These functions are well-defined since both h +\|x+hyil2 and h - {|x+hy|

are real convex functions. For each h # o and x,y € X set

lix+hy || - HXI\_ (2.5)

Yk = n

The following properties are obvious

no
(0]
~

<y,x>S = ||xii<y,x>+, <y,X>i = ilx:J<y,x>_ (
YX> <<y, x> <llyll, if h> o; <y,—x>p = <Yaxs (2.7)

where p = 1 or s,

YX> <Y, X if h< o, SYIX> L < <YK < IxIl iyl (2.8)



Recall also the definition of the duality mapping F:X+ X of X, i.e.,

3 * ¥* ‘2 }* 2
F(x) = (x e X ; x (x) = [Ixl|" = lix |7y , xeX, (2.9)

3 3*
where X is the dual of X. The norm on X is denoted also by |[-]].

The result below is well-known.

*
Proposition 2.1. For each x,yeX, there are xieF(x), i = 1,2, such that:

* #*
Vx> = X (y) = sup (x (y); x eF(x)} ,
(2.10)

* *

x;(y> = inf {x (y); x €F(x)}

1}

Vx>

# #*

Here x (y) denotes the value of x €¢X at yeX. The proof of Proposition
2.1 is given in Appendix (Corollary 1.1 and Remark 1.1).
We are now prepared to introduce the basic hypothesis (H(2.1)) on the

t-dependence of A(t).

(H(2.1)) - There exist ¢ > 0, a continuous function f:]a,b[ » X, and a

bounded (on bounded subsets) function L:R+ > R+ such that:

2
Y Y% x>0 < wllx =x T+ IECE)=£0s) T HIx =x [ILCHx, 1) (2.11)

for all a < s <t <T < b, [xl,leeA(t). [ %, s¥ eAls), —=< a < b < +e,

2 2]
(H(2.2)) - The domain D(A(t)) of A(t) depends on te[s,T] in the following
sense:

If t +t in ]s,T], x_eD(A(t )) and x_ -+ x in X, then xeD(A(t)).
n n n n

Remark 2.1 If D(A(t)) is a closed set for each te[s,T], then (H(2.2))

means that the mapping t » D(A(t)) is closed.

Example 2.1. Hypotheses (H(2.1)) and (H(2.2)) do not imply, in general,

that D(A(t)) is independent of t. For example, let X=R= |- ,+«[ and
A(t)x =v'x-t + 1, with D(A(t)) = [t,+«] = D(A(t)), teR.

In this case (1.11) is equivalent with (1.12) which is satisfied because

R(I+hA(t)) ¢D(A(t+h) for all h >o. Clearly (2.11) holds since

(*) (A(t)x-A(s)y(x-y) <Vt-s|x-y|, X > t,y> s.

Examples in partial differential equations in which D(A(t)) is also



time-dependent are given in Chapter 3, § 2.

However, if A(t) is m-dissipative for every te[s,T], then B?;?277= D
is necessarily independent on t (see Remark 4.2). Take for Example
D = BTK?ETT (in this case). Obviously, the inequality (*) is stronger

than (2.11) and corresponds to the case !!f(t)—f(s)lli Vt-s (see (2.4%5)).

Remark 2.2. The notation [x,y]eA(t) means xeD(A(t)) and yeA(t)x. For

t=s Condition (2.11) implies the w-dissipativity of A(t), i.e.,
Y =YX, mY > <ullx -x ||2 [x.,¥y.]eA(t) (2.12)
172’71 Y271 = 1 2 ’ J’7 3 ’
J = L2y tela,b [. Some details in this direction may be found in Ap-

pendix. Condition (H(2.1)) allows D(A(t)) to be t-independent (see

Example 2.1 above and Section 2 in Chapter 3).

In the theory of the convergence of DS-approximate solutions, the

result below is essential.

Propostion 2.2. (1) the condition (2.11) is equivalent with

(1=xw) lx =x 01 < lx =x - x(yl—y2)|l+‘fllf(t)-f(s)llL(llxgll) (2.13)

2 2

for all r>o0,a<s<t<T, [xl,yl]é.A(t), [xg,yg]e.A(s).

(2) The inequality (2.13) implies

O+ = e Dk =3 I < allxg= wy,=x I+ wllxy —ay =x IF +
+ Xu”f(t)—f(S)HL(HXZH) (2.14)
for all A,u >0, a <s <t <T, [xl,yl]eA(t), [X2,y2]e A(s), and

(2.14) implies

(14 xm)llxl—UIli llxl—xyl—ull + AlAG)ul + Allf(e)=f(s) L lull)

-

(2.15)
for all x>0, a <s <t <T, [xl,yl]e,A(t), ueD(A(s)), where
[A(s)u|l = inf {||v]] ; veA(s)u} . (2.16)
Remark 2.3. Inequality (2.14) is equivalent to
2 .
S R S i ZTE Pt SL mllxl—x2|| + |[£(t)-f(s) | !le—lelL(lllel)

(2.14)



for all a< s <t <T, [xl,yl]eA(t), [ X ,v.]leA(s) (see Appendix).

2°72

Proof of Proposition 2.2. (1) In view of Proposition 2.1 there is

¥*
X eF(xl—XZ), such that

#*
<Y Vo X K3 = X (yl_y2)' (2.17)

It is now easy to check that (2.11) implies (2.13). Indeed, by (2.11)

and (2.15) we have

2 *. * #*
[le—x2ll = x (x =x,) = x (x;=x,= Ay -y, )+ ax (y -y,)
2
< Hxl-x 1% -x, = x(yl—y2>||+ Awllxl—x [+

2 12 2

= - |
AX () f(S)HL(IIer)Hx1 x2|
which yields (2.13). We now prove that (2.13) implies (2.11). To this

goal, observe that (2.13) can be written in the form

Iy 2p = My ) ol i -l Ce)-2(o) LR, 1. (2.18)

.Y
In view of (2.6) we see that (2.18) implies (2.11). Similarly, we show

that (2.11) implies (2.14), namely

2 #* #*
A+ I x.=x_ 1|7 =2x (x,=-x_)+ ux (x,-x_) =
12 1 2 1 2 (2.19)

* ¥* ¥*

- X - - -, - A - ;
ux (xl X, xyl) X (x2 Xy uy2)+ u X (yl y2)

Combining (2.11), (2.17) and (2.19), we get obviously (2.14). Finally,

Triangular inequality, X, =u, yzeA(s)u and (2.14) imply clearly (subtrac-

ting Allxl—xzil and then divinding by u)

(1- Xw)llxl—UH j_llxl— Ayl—u|!+ XHygli + Al E(t)-£(s)IILCull),

VyzeA(s)u, which yields (2.15). The proof is complete.

2.2. A remarkable estimate.

We now consider the discrete scheme(Pm,Q?, §T } = DS corresponding

to 8clo,T land ﬁoeD(A(é)) is the sense of (1.2)-(1.7). Therefore

) LR yT ith
m o 1 N bowd



m
§ =t <t <...<t < <t <t =T
o 1 j N N b meN
m-1 m
~ Am ~m ~ ,
d = mex (t., -t, .) »oasm=+ o, ogd >4% (2.19)"
m . J Jj-1 m
1<j <N
- — m
~M A
m = _X'—l m Am, ~m ©
gm - 4 I70 5" eat™E™, j=1,2,...,N (2.20)
J o oom _gm J NN m
£t
J J=1
2™ ep(A(E™), = 0,1,..., N, %"+ % e D(A(B)) (2.21)
J J m o o
~ Nm ~m ~m ~m
b =z (t.-t, Dlp.ll » o asm + = . (2.22)
mooyo J o J-1 J

The DS-approximate solution Gm corresponding to the above discrete

scheme is defined as u (see (1.2)), that is

Mt = t" -8
o o)
u (t) = (2.23)
o m ~m ~m
X, te K , t
J ] j-1 J]

For simplicity of writing, set

Then, by (1.6) and (2.20), we have

XE -hiyi = %, L FhPL P +hjpj’ (2.25)
with
VReAlt )X, §?eA(E?)§§, b m LoBuvens Mo 35042500 ol
It is also convenient to denote by
a5 = Mxg=iTi, o = NECeD-sEDI <o(leg-t]1) (see(2.38))
. ﬁj/(h£+ﬁ?), B s hi/(h2+ﬁ?), Y, 57 hiﬂ?/(h:+ﬁ?) (2.26)



n ~m 2 n PPN PS4
= -t .- = a < <T. .27
Ck,j(“) [(tk tj n) +dn(tk s)+dm(tj $)]”%, o <|nl (2.27)

The next simple lemma will play an essential role in the proof of the

main estimates.

Lemma 2.1. The following inequality

a. . C (n)+8. c. . . (n) < c  .(n) (2.28)
k,j k-1,] k,J k,j-1 - k,J
holds for k = 1,2,...,N , j=1,2,...,N .
n m
Proof. Since a +B . = 1 we have
E— k,J k,J
1= o, 5%e1, 50, 5%, g1 )
(2.29)
2 2 A
< Loy, %en, 5400, 5%, 51 ()

Here we have used the elementary inequality

2 2. %, 2 2. %
a1b1+a2b2 < (a1+a2) (b1+b2)
) % %
with al = (ak,j) s a2 = (Bk,j> , and so on.

For simplicity, and since there is no danger of confusion, in this

proof we drop the indices m and n (i.e., we write tE = tk, t? = tj and

so on); Thus, according to the notations in (2.24) we have tk l:tk—hk,
t. :E,—ﬁ_, and therefore
J=1 3

~ 2 2 2 2
= = = =t = = = = .
(tk—l 3 n) <tk tj n) 2hk(tk tj n)+hk (2.30)

- 2 - 2 - - ~2
-t - -t - 2h (t -t - h .
(tk 5el n) (tk tj n) + J< ® n)+ 3

Consequently

_s)+d (t.-s8) +
-1 m J

1 e 2 ~ ~ ~
h (t -t, .-n) +d (t -s)+d (t,
n k m

h h,
J

h. +h
k5

(t-t-n)2+d (t -s)+d (t —8)+ (h -d_+h -d )
k J n k m k n j m



