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Preface

This book grew out of a course in Foundations of Mathematics
which I have given at the University of Michigan for over twenty
years. The reason for instituting the course was simply the conviction
that it was not good to have teachers, actuaries, statisticians, and
others who had specialized in undergraduate mathematics, and who
were to base their life’s work on mathematics, leave the university
without some knowledge of modern mathematics and its foundations.
The training of these people consisted chiefly of ‘“‘classical” mathe-
matics and its applications—that part of mathematics which is based
on pre-twentieth-century and, in large part, on pre-Cantorian ideas
and methods.

It seemed, too, that a course in Foundations at about the senior
level might serve to unify and extend the material covered in the tradi-
tional mathematics curriculum. The “compartmentalization’ of the
preparatory school—arithmetic, algebra, and geometry—is usually
continued in college with a further dose of algebra, followed by courses
in analytic geometry and calculus in which a little unification of pre-
ceding subjects takes place, but no time is spent on the nature of the
material or its foundation.

Also, the growing realization that mathematical logic is a new and
legitimate part of mathematics made it seem advisable to institute a
course which would make manifest the importance of studies in the
Foundations, and the reasons for inquiring into the nature of mathe-
matics by either the tools of logic or other methods.

To my first class in the course I owe much for inspiration and
encouragement. It consisted, with one or two exceptions, of approxi-
mately thirty actuarial students, most of them first-year graduate stu-
dents. Their response was surprising; for I was aware of the antago-
nism of many professional mathematicians to any inquiry into the
nature of mathematics, especially if it leads to any questioning of
the validity of time-honored principles and methods (the analogue in
mathematics, perhaps, of the historical lag in the cultivation of those
sciences that study man’s own behavior).
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Perhaps their reaction was due to the change, possibly refreshing to
them, from the type of teaching which treats mathematics as a “disci-
pline,” dogmatic in character. Whatever the reason, the course
seemed to “take’” with them and left no question about the desirability
of repeating the experiment. (Even today I occasionally meet members
of that original class, many of them now insurance company executives,
and find them still able to recall topics that were discussed.)

In a few years the course ceased to be an experiment and became
as well established as any other course in the curriculum. This
development was aided, no doubt, by the realization that the course
was also fulfilling other purposes. For those students who were going
on to the doctorate in mathematics, it did spadework in the ideas and
methods that were going to form the principal tools in their graduate
courses and research. And for mature students in other fields, such as
philosophy and the social sciences, it provided an insight into basic
mathematical concepts without the necessity of first wading through
the traditional courses in algebra, geometry, calculus, etc.

In the belief that such a course ought, perhaps, to be offered in most
universities and colleges that train mathematicians either for teaching
or for any of the professional fields, I decided to incorporate the
material covered in a book which would serve as a basis for such a
course. Unfortunately, a book in my own special field of research took
precedence and delayed my starting on the present work for at least
ten years. Moreover, it seemed desirable to include in the book
material that it was not possible to crowd into a one-semester course,
and which has usually been suggested for collateral reading; especially
material that is in languages other than English. For it continues to
be true that the students in American universities are generally not
prepared to read in French and German; and most of the older and
basic work in Foundations was originally published in German. The
material in Chapter X (Intuitionism), for instance, has heretofore been
available almost entirely only in German.

In a general way, the idea of the book is similiar to that which
motivated J. W. Young’s Fundamental Concepts of Algebra and Geome-
try, first published in 1911. In 1932 I discussed with Professor Young
the desirability of a book such as this one; he agreed thoroughly that
it was desirable to write it, if only to have available a book on funda-
mental concepts that would take into account the great strides that
have been made in Foundations since the publication of his book.

As already indicated, I have given the material in the form of a
course of one semester, with a calculus prerequisite. The students who
have taken the course have, however, been at all levels, from under-
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graduate juniors to students already writing doctoral dissertations.
Ideally, the course should be given at senior level or first-year graduate
level. And, I have found, it is not necessary to insist on the calculus
prerequisite for mature students in other fields, such as philosophy.
(One of the most enthusiastic students in my experience was a medical
student who was taking the course as a “‘cultural” subject.) No mathe-
matics student, however, should take the course without having had cal-
culus, and for the average student it is better that he have taken
courses such as advanced calculus and projective geometry in order to
develop the maturity requisite for abstract thinking.

Whether I have succeeded in getting down on paper a reasonable
facsimile of what I have done in class only the reception of this book can
tell. No false modesty prevents me from admitting the success of the
course itself, as numerous past students will testify. But the enthu-
siasm and inspiration which come from facing a group of interested
students are hard to duplicate in the seclusion of one’s study, and it is
difficult to recapture the many spontaneous ideas and illustrations
that have revealed themselves in the classroom from time to time
over the years. No doubt, now that the book is written, I shall
occasionally recall some of them and regret that they are doomed to
oblivion.

I have made it a general rule, incidentally, not to reveal to students
my own opinion regarding a controversial point, despite frequent
requests to do so. It has always seemed better to present, as em-
phatically as possible from the point of view of their proponents, such
topics as are controversial; and frequently, in order to aggravate class
discussion, it has been my custom to oppose the point of view of a
student while secretly agreeing with him. There is nothing new about
such methods of instruction, of course, and I bring .them up here
largely to afford occasion to remark that I am including my own
opinions regarding the nature of mathematics in the material of Chap-
ter XII. In the earlier chapters I have tried to follow my usual rule of
acting as advocate for the view presented; and, in thus breaking my
rule, I do so not only with a view to getting in my own “innings,” but
also to furnish additional fuel for the stirring up of controversy which,
it seems to me, is the most effective stimulant to original and creative
thinking. And if, after reading this book, the student is not aroused
to the extent of “thinking about” mathematics, I shall have failed in
one of my chief purposes in writing it.

For rapidity and exactness of reference, the decimal system of num-
bering sections has been employed. Cross references to items in the
text are made by citing chapter and section; thus “IV 2.4” refers to
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Chapter IV, Section 2.4. However, for reference to a section in the
chapter under consideration, only the section number is used; thus
“1.2” refers to Section 1.2 of the chapter in which the citation occurs.

The Bibliography is divided into two parts, the first listing books and
longer memoirs, the second listing papers and shorter articles. Refer-
ences to the Bibliography are enclosed in brackets, those involving
capital letters such as [B], [Ha], [H;] referring to the first part of the
Bibliography, and those involving single lower-case letters such as
[a], [b] referring to the second part. Page or chapter numbers will
frequently be included; thus “Hilbert [Hz; 6] will be found under
Hilbert’s name in the first part of the Bibliography, item [H3] (the
reference, then, is to page 6 of Hilbert’s Foundations of Geometry).
Always, “f” indicates “footnote,” and “ff’’ indicates “and the following
page or pages.”’

To those colleagues and students who have given me encouragement
and stimulation, I wish to express sincere thanks. I am especially
grateful to Professors E. T. Bell, Leon Henkin, Paul Henle, and Leo
Zippin, and to Dr. C. V. Newsom for suggestions and criticisms; but
the errors and shortcomings to be found herein are not their fault and
are present only in spite of their wise counsel.

For aid in a material way, thanks are due to the Office of Naval
Research, under whose Contract N9onr-89300 the first draft of this
work was written, as well as to the California Institute of Technology,
which generously afforded an office and library facilities during the
academic year 1949-1950 for my writing and research.

R. L. WILDER
Ann Arbor, Michigan
September, 1952



Suggestions for Use
as a Textbook

The plan of presentation is based on the idea that an appreciation
of the need for a study of the Foundations of Mathematics can come
only through a prior acquaintance with Fundamental Concepts of
Mathematics. It is the nature of these concepts and the contradictions
to which their unrestricted use may lead that make one realize the
necessity for going deeper into their background—Foundations.

Accordingly the book is divided into two parts: Part I, Fundamental
Concepts and Methods of Mathematics, and Part II, Development of
Various Viewpoints on Foundations. In Part I are presented those
topics which are indispensable for work in modern mathematics. Here
the student will become aware of the conventional character of much
that he has heretofore taken for granted, as well as of the true intrinsic
nature of such concepts as the infinite, the real number continuum,
arithmetic, and geometry which he has continually encountered in his
elementary and intermediate mathematics courses. When this material
has been digested, the student’s curiosity about the actual nature of the
Foundations has usually been aroused, and he is ready for Part II.

By judicious selection of material, a satisfactory one-semester course
can be based on the book. This has been my custom; for instance, such
proofs as those of the equivalence of Choice Axiom, Comparability, and
Well-ordering in Chapter V can be omitted, and some discussion of the
principles involved, the reasons why the equivalence may induce some
to reject the Choice Axiom, etc., can be substituted therefor. As a
matter of fact, much of the material on the infinite in Chapters IV and
V can be summarized with details omitted; and a like comment holds
regarding Chapter VII.

However, it is probably best to leave the choice to the judgment of
the individual instructor. One may wish to place the main emphasis
on Foundations proper, spending most of the time on Part II; the
bibliographical references should enable the instructor to supplement
the material given, if he so desires. Another may wish to give a course
emphasizing Fundamental Concepts, in which case Part I may be used
exclusively, or may be supplemented by some discussion of the material
in Part IT without going into much detail, however.

x



x SUGGESTIONS FOR USE AS A TEXTBOOK

If the book is used for a two-semester course, probably all details can
be covered, although one can introduce variation, if desired, by substi-
tuting or augmenting here and there from the Bibliography. Prob-
lems are provided for the better understanding of the concepts discussed
in Part I; these may be used for class discussion, or as a basis for
written work.
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The Axiomatic Method

Since the axiomatic method as it is now understood and practiced
by mathematicians is the result of a long evolution in human thought,
we shall precede our discussion of it by a brief description of some
older uses of the term axiom. The modern usage of the term repre-
sents a high degree of maturity, and a better understanding of it
may be achieved by some acquaintance with the course of its
evolution.

1 Evolution of #s method

If the reader Hasat hand a copy of an elementary plane geometry,
of a type frequengly used wmaEigh schools, he may find two groupings
of fundamental assumptions, one entitled ‘“Axioms,” the other entitled
“Postulates.” The mtent of this grouping may be explained by such
accompanying remarks as: “An axiom is a self-evident truth.” ‘A pos-
tulate is a geometrical fact so simple and obvious that its validity may
be assumed.” The “axioms” themselves may contain such statements
as: “The whole is greater than any of its parts.” “The whole is the
sum of its parts.” “Things equal to the same thing are equal to one
another.” “Equals added to equals yield equals.” It will be noted
that such geometric terms as “point” or “line” do not occur in these
statements; in some sense the axioms are intended to transcend geom-

etry—to be ‘‘universal truths.” In contrast, the ‘“postulates”
probably contain such statements as: “Through two distinct
points one and only one straight line can be drawn.” ‘A line can

be extended indefinitely.” “If L is a line and P is a point not on
L, then through P there can be drawn one and only one line parallel
to L.  (Some so-called ‘“‘definitions” of terms usually precede these
statements.)
This grouping into “axioms’” and “postulates” has its roots in an-
3



