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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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FOREWORD

The Second 1993 C.I.M.E. Session "Algebraic Cycles and Hodge
Theory" was held at Villa Gualino, Torino, from June 21 to June
29, 1993.

There were three series of main lectures and some seminars: this
volume contains the texts of the three series of main lectures
and of those seminars most closely related to them, providing
results or examples that are directly relevant to some part of
these main lectures.

The theory of algebraic cycles is today still one of the most
difficult and most beautiful areas of algebraic geometry (and of
all mathematics): notable open problems include the Hodge con-
jecture, the relations among the several equivalence relations
between algebraic cycles, the connections with the properties of
some cohomology theories.

Our main goal in organizing this C.I.M.E. Session was to gather
together some of the leading mathematicians active in this area,
to assess the present state of the art and to describe the
possible future developments.

Thus the three series of main lectures dealt with:

i) Infinitesimal methods in Hodge Theory, delivered by Mark L.
Green (U.C.L.A., USA)

ii) Algebraic cycles and algebraic aspects of cohomology and
K-theory, delivered by J.P. Murre (Rijksuniversiteit, Leiden,
The Netherlands)

iii) Transcendental methods in the study of algebraic cycles,
delivered by Claire Voisin (Université Paris-Sud, Orsay, France)

To complete this rough outline of the volume, it suffices to
say a few words about the seminars that have been selected for
inclusion in the text.

The first one, by G.P. Pirola, reports on Jjoint work with
A. Collino: they compute the infinitesimal+ invariant of the
normal function associated to the <cycle C -C in its Jacobian
and derive from this computation a nice refinement of Ceresa's
theorem and a Torelli theorem in the spirit of Griffiths in
genus three. These results are obtained by applying M. Green's
technique of computing the infinitesimal invariant of a normal
function and can be regarded therefore as an exemplification and
as a striking application of this technique. They are closely
related to the first series of main lectures, and in the summer
of 1993, new, surprising and important results were obtained
from what was proved in the seminar.

The second seminar by Bert Van Geemen ties in closely with
the lectures of J.P. Murre and his treatment of the Hodge
conjecture: the author restricts his attention to abelian
varieties, in particular to those of Weil type, and studies
them by means of the Mumford-Tate group, a topic that cannot be
left aside in a course like this one. Finally the author points
out some relations between theta functions and cycles on some
particular abelian fourfolds.



Vi

The last seminar, by S. Miller-Stach, deals with height pairings
and reveals a connection between mixed Hodge structures (already
treated in M. Green's lectures) and Deligne cohomology (see J.P.
Murre's lectures) by using the theory of logarithmic currents
(see M. Green's lectures). Thus this topic finds here an ideal
context in which to be outlined and discussed.

We.are very happy to note that the lectures did an outstanding
job and that all the participants contributed with interest and
enthusiasm to creating a very stimulating atmosphere throughout
the session. It is fair to say that its spirit has been captured
well by the texts of this volume. We wish to thank the C.I.M.E.
Foundation which made all of this possible.

Alberto Albano Fabio Bardelli
Dipartimento di Matematica Dipartimento di Matematica
Universitd di Torino, Italy Universita di Pisa, Italy
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LECTURE 1

During most of my years as an undergraduate student, I thought that al-
gebra was my favorite subject. However, in my senior year of college, I took a
course .from Victor Guillemin. This was my first course in geometry, and the
main theorem was De Rham’s Theorem. This had a lasting effect on my mathe-
matical interests, as the reader can observe. Much as Aristophanes thought that
men and women were originally one creature trying (often in vain) to become
reunited, so mathematicians often search through life (once again, often in vain)
for problems that will bring together the various parts of mathematics that they
love. For me, my contact with the area of infinitesimal methods in Hodge theory
was one moment when, briefly, this actually happened.

My goal in these lectures is to cover the material necessary to the under-
standing of the Nori Connectedness Theorem, with stops for other interesting
results along the way. Hodge theory, like algebraic geometry as a whole, is rich
in having many levels of abstraction at which to approach any given idea. Un-
fortunately, as one rises to higher levels of abstraction and mathematical power,
one tends to get further and further away from the underlying geometry. What
I have attempted to do here is to try to make accessible some of these various
levels by starting with the most geometric formulation and gradually introduc-
ing more abstract formulations. Thus some proofs are given more than once, in
hopes that this will clarify how the machinery works.

I would like to thank my fellow lecturers, Jacob Murre and Claire Voisin, for
their camaraderie and mathematical inspiration; I feel privileged to have shared
a podium with them. I want to express my deep gratitude to Fabio Bardelli, who
had the insight to realize that this subject needed a series of expository lectures
and who mapped out for the three of us his vision of what should be covered; I
could not have wished for a better or wiser organizer of the scientific program.
I would also like to thank Alberto Albano for courageously and warm-heartedly
stepping in when Fabio became ill, and carrying off the conference in a successful
and enjoyable way.

De Rham’s Theorem states that every real cohomology class on a smooth
manifold M can be represented by a closed C* differential form w, and that two
closed forms represent the same cohomology class if and only if they differ by
an exact form dr, where 7 is a C* differential form. If we denote by A*(M)
the C* k-forms on M and A*(M),d the complex of C* differential forms with
exterior derivative, we denote

HEr(M) = H*(A*(M)).
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THEOREM (De Rham’s Theorem). For a smooth manifold M, for all k,
HEr(M) = H¥(M,R).

WH[UH/QW]'

Once Einstein had discovered general relativity, it was realized that the
electromagnetic field (E = (Ey, E5, E3) the electric field and B = (B, B2, Bs)
the magnetic field) could be represented on four-dimensional space-time by a
2-form

The map is given by

3
Q= Z E;dz; A dt + Bydz, A dz3 + Badzs A dzy + Bsdzy A dzs,

g=1

and that two out of four of Maxwell’s equations in free space could be written
as

dQ = 0.

The other two equations do not come out as naturally, but if one considers the
2-form

3
*Q = Eydz, A dzs + Epdzs Adzy + Ezdzy Adzy — Z B;dz; A dt,

=1
then the other two equations are
d*Q=0.

The relationship between € and *§ is not invariant under smooth change of
coordinates, but it is invariant under changes of coordinates which preserve
the Lorentz metric on space-time. It was physical considerations of this kind
which led Hodge to discover the Hodge *-operator and to formulate the Hodge
Theorem.

The most natural mathematical motivation for the Hodge Theorem is to ask
whether one can find one “natural” differential form w representing each coho-
mology class. It is appealing to find some measure of the “size” of a differential
form and then look for the “smallest” element of the set {w +d7} for fixed closed
form w as 7 varies over all smooth forms of a given degree. One might define
the size first pointwise and then integrate over M. This is done as follows:

We need to remember some standard constructions. If V,W are vector
spaces with a positive-definite inner product, then V® W may be given a natural
positive-definite inner product so that if e; and f; are orthonormal bases for
V,W respectively, then e; ® f; is an orthonormal basis for V @ W. Secondly,
if W C V and V has a positive-definite inner product, then W inherits one by
restriction and V/W by orthogonal projection. If V has a positive definite inner
product, then V* inherits one naturally in such a way that the dual basis of an
orthonormal basis is orthonormal.
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Let V be an oriented n-dimensional vector space over R equipped with a
positive-definite inner product. Then for any k, A¥V may be given a natural
positive-definite inner product by combining these two standard constructions,
since A¥V C ®*V. Thus if M is an oriented Riemannian manifold of dimension
n and w is a smooth k-form on M, then for any p € M, we can apply the
construction above to T, 5, with the induced inner product to obtain a length
||lw||2. If M is an oriented compact Riemannian manifold, then we define

Ity = [ wlzav,
M

where dV is the element of volume. This is a positive-definite inner product on
the space of smooth k-forms on M.

DEFINITION. A smooth k-form w on a compact Riemannian manifold M is
harmonic if dw = 0 and

llwllar < llw + dr||ar
for all smooth (k — 1)-forms 7. We denote the set of harmonic k-forms on M by
HE(M).

There is slightly different way to describe the inner product on forms. The
inner product on a vector space V gives a natural map

VeV —-R.

This in turn gives a natural isomorphism V' — V* of V with its dual. If we
take AF of this isomorphism, we obtain an isomorphism A¥V — AFV*. Taking
volume gives a natural isomorphism A"V = R. Wedge product gives a map

APV x ARy S A"V > R,

and since this is a non-degenerate pairing, it gives a natural isomorphism AFV =
A™~FV* and now using AF of the isomorphism induced by the inner product,
we can identify the factor on the right with A"~ ¥V, Putting all this together,
we obtain a natural map

s APV o ARy

and this is the Hodge *-operator. This is defined pointwise and thus extends to
a map *: A¥(M) — A"~¥(M). The basic facts are:

LEMMA. (1) For a,f € A%V,
. aAxf =B Axa=(a,B)Vol,

where Vol € A™V is the element of volume;
(2) If ey, ..., en is an oriented orthonormal basis for V, then *(e;, A---Ae;,) =
+ej, A---Aej, ., where {j1,...,dn—k} ={1,2,...,n} —{i1,..., 4} and the sign
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is chosen so that e;; A---e;, Axej, A---Aej,_, =€ N---Neq;
(3) For a € AFV, #2a = (—1)k(=K)q,
COROLLARY. For o, 3 € A¥(M),

(e B)me =/Ma/\*ﬂ-

We would like to construct an adjoint for d: A¥(M) — A¥+1(M).
PROPOSITION. Let d*w = (—1)* +D(n=k)+1ydxy for allw € A¥(M). Then
(d*w, )M = (w,dd)m

for all w € A¥(M),$ € A*~1(M).
PROOF': By Stokes Theorem. O
DEFINITION. The Laplace operator A: A¥(M) — A¥(M) is defined by

A =dd" +d*d.

PROPOSITION. Forw € A¥(M), the following are equivalent:
(1) w is harmonic;

(2) dw = 0 and d*w = 0;

(3) Aw = 0.

PROOF: (1)«(2): If w is harmonic, then dw = 0. Now for any constant ¢,

lw + edT||3; = (w + €dr,w + €dT)p
= [lwlf3s + 2¢(w, dr)nr + €*||dr]I3
= [lwllis + 2¢(d*w, T)n + €|ldl3.
For € small, we see that w harmonic implies that (d*w, )y = 0 for all 7 €
A¥-1(M), and this forces d*w = 0.
(2)«— (1): By the formula above, if dw = 0 and d*w = 0, then
llw + drll3s = llwllds + lldrlli3s,
and thus
llwllar < llw + d7|ln
if dr # 0.
(2)— (3) Aw = dd*w + d*dw = d(0) + d*(0) = 0.
(3) —(2): We have for any w that
(Aw,w)p = (dd*w,w)pm + (d"dw,w) M
= (d'w,d"w)y + (dw,dw)p
= [ld*wllfs + lldwll3s-
If Aw = 0, then the left hand side is zero, and hence the right hand side is,
which implies d*w = 0,dw = 0. ; O



PROPOSTION. There is a natural injection
H* (M) — Hpgp(M)
sending a harmonic k-form w to its De Rham cohomology class.

PROOF: The only thing to be proved is that if a harmonic form is exact, then it
is 0. If w € H¥(M) and 0 belongs to the De Rham class of w, then by minimality
|wlar < 10lar =0, sow = 0. a

Of course, it is not clear that harmonic forms exist, i.e. that there is a form
of minimal size in each De Rham class. To see that a sequence of smooth forms
in a De Rham class with sizes converging to the infimum of the sizes of forms in
that class must converge to a smooth form requires some basic results from the
theory of elliptic operators. The final result, which we quote here, is:

THEOREM (The Hodge Theorem). For M a compact oriented Rieman-
nian manifold, the natural map

H*(M) — Hpp(M)

is an isomorphism, i.e. every De Rham class is represented by a unique harmonic
form.

Beautiful as it is, the Hodge Theorem by itself is not quite enough for the
purposes of Hodge theory. One sometimes needs the full package of consequences
of elliptic operator theory. The eigenspaces of A are finite-dimensional and are
spanned by smooth functions, and the eigenvalues are > 0 and march off to
infinity. Every L? k-form can be expressed as the L? limit of sums of eigenforms
of A. If one takes a k-form, projects it on the space orthogonal to H*(M), and
then multiplies its projection on the A-eigenspace of A by %, one obtains the
Green’s operator. The fact we will need to quote is that:

THEOREM (Existence of Green’s Function). For M a compact oriented
Riemannian manifold, there exists a unique operator G: A*(M) — A¥(M) such
that G commutes with d and d*, G(H*(M)) = 0, and

Id = 7 + AG,
where 73 is the orthogonal projection A¥(M) — H¥(M).

If a compact orientable manifold M has a metric with nice differential-
geometric properties, it is possible to draw interesting conclusions about the
cohomology of M. However, it is really in the case of complex manifolds, espe-
cially Kahler manifolds, that the Hodge Theorem pays truly powerful geometric
dividends. .

As with the Hodge theorem, there is a certain amount of preliminary mul-
tilinear algebra that goes into the story. The main difference is how much inter-
esting multilinear algebra goes on, and how subtle some of the results are.
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DEFINITION. LetV be a vector space over R. An almost-complex struc-
ture on V is an endomorphism J € End(V) such that J? = —Id.

DEFINITION. LetV,J be a real vector space with almost-complex structure,
and Ve = VQRC, with J extended to V¢ in the canonical way. Define V1.0, V%!
respectively as the +i and —1t eigenspaces of J on V¢.

PROPOSITION. Let V,J be a real vector space with almost-complex struc-
ture. Then Vo = V10 @ V1. Further, dimgV = dimcV'° = dimgV%!.

PROOF: The eigenvalues of J occur in conjugate pairs, and clearly the direct
sum of V1% and V%! injects into V. It thus suffices to prove that dimgV?1? =
dimgpV. The map v — (iv 4+ Jv) @ (—iv + Jv) takes Vo — V1 @ V%! and is
injective, which shows that dimc Ve < 2dimc V10, which is enough. O

DEFINITION. Let V,J be a real vector space with an almost-complex struc-
ture. A positive definite inner product (,) is hermitian if J is an isometry, i.e.

(Jv,Jw) = (v,w) for all v, w € V.

PROPOSITION. Let V,J be a real vector space with almost-complex struc-
ture and hermitian metric (,).
(1) The map w:V ® V — R defined by

w(v,w) = (Jv,w)

is a real alternating form;

(2) If we extend w to an element of A2V, then w is zero when restricted to
Vl,O ® Vl,O and VO,l ® VO,I’.

(3) w gives a non-degenerate pairing when restricted to y10 g yol.

(4) If we extend (,) to be complex linear in the first variable and conjugate linear
in the second variable, then it is a positive definite Hermitian inner product on
VLo,

PROOF: (1) (Jv,w) = (J?v,Jw) = —(v, Jw) = —(Jw, v).

(2) For the purposes of proving (2) and (3), extend (,) to be complex linear in
both entries. If v,w € V1°, then (Jv,w) = i(v,w) = (v,Jw) = —(Jv,w), so
(v,w) = 0 and thus w(v,w) = 0. Similarly for V1.

(3) If v € V10 then for some w € Vg, (Jv,w) # 0, as otherwise Jv = 0 and
hence v = 0. If w = w'® 4+ w%! is the decomposition of w under the direct
sum decomposition Vg = V10 @ V! then by (2), (Jv,w) = (Jv,w"!), and
this proves the pairing is non-degenerate in the first factor. A similar argument
works for the second factor.

(4) Ifv = a+ib € V10, where a,b € V, then (v,v) = (a+ib,a—1ib) = (a,a)+(b,b),
from which positive-definiteness is clear. O



DEFINITION. Let V,J be a real vector space with almost-complex structure
and hermitian metric (,). Let w be as in the preceding Proposition. Then w is
called the alternating form associated to (,).

DEFINITION. For a complex manifold M, a C* form of type (p,q) is a
C* section of the bundle APTY%* @ AT%1*; we will denote the set of these by
API(M).

DEFINITION. Let M be a complex manifold with almost-complex structure
J:Ty — Ty. A Riemannian metric on the underlying real manifold of M is
hermitian if it is hermitian with respect to J on Tu,, for every point p € M.
The associated (1,1) form w of the hermitian metric is defined by taking w,
to be the alternating form associated to the metric on Ty , for every p € M.

COROLLARY. The associated (1,1)-form of a hermitian metric is a real 2-
form on the underlying real manifold of M and has type (1,1).

DEFINITION. A hermitian metric on a complex manifold M is said to be
a Kahler metric if the associated (1,1) form w is closed. In this case, w is
called the Kahler form. The element of H3z(M) determined by w is called
the Kahler class. If the Kahler class belongs to the image of H*(M,Z), the
metric Is said to be a Hodge metric.

EXAMPLE. Fubini-Study metric
On P, if we let
0-S—-VeO0p —Q—0
be the tautological sub-bundle sequence, then it is well-known that
Tp~ = Hom(S, Q).

If we put a Hermitian metric on the complex vector space V/, then it induces
natural Hermitian metrics on S and @ by restriction and orthogonal projection.
This in turn induces a natural metric on S* ® Q = Hom(S, Q). This metric is
invariant under the action of the unitary group on V, and this forces the asso-
ciated (1,1)-form w to be closed. Since H?(P",R) is l-dimensional, adjusting
the metric by a constant makes w integral, and thus P has a Hodge metric, the
Fubini-Study metric.

PROPOSITION. A smooth projective variety M C PV has a Hodge metric
obtained by restricting the Fubini-Study metric.

PROOF: It is elementary to see that the restriction of a Hodge metric is Hodge,
since the operations of restricting and taking associated (1,1)-form commute. ]

We quote the following famous consequence of the Kodaira Embedding The-
orem:
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THEOREM (Kodaira). If a compact hermitian complex manifold admits a
Hodge metric, then there exists an embedding of M in some PN such that the
Hodge metric is § times the restriction of the Fubini-Study metric, for some
positive integer k.

Using geodesic coordinates, it is easy to see that at every point p of a
Riemannian manifold M, there are local coordinates z,...,z, for M centered
at p such that

0 0
— —)=6;+0 2y,
(5o 327 = b + Olel)
However, it is not true that at every point p of a hermitian complex manifold,
there are local holomorphic coordinates z1,. .., z, centered at p such that
a 0
—, =) =46;; + O 2.
(32; az]) 1) + (”Z” )

The following proposition makes the Kahler condition quite natural (or at least
as natural as it is going to get.)

PROPOSITION. Let M be a complex hermitian manifold. The following are
equivalent:

(1) The metric is Kahler;

(2) At every point p of M, there are local holomorphic coordinates zi,...,zp
centered at p such that

0 0
—,=—)=6;; +0 s
(62;‘ 831) 1) + (”Z” )
PROOF: If z,, ..., 2, are local holomorphic coordinates on a complex manifold
M, let

a 0
hij = (57—, 5—)-
e (6z.~ 0Zj)
Then
w= iz h;jdz,- A dfj.
ij
If (2) holds, then all first partials of the h;; vanish at the origin, and hence

dw = 0 there; since the point was arbitrary, dw = 0 and the metric is Kahler.
Conversely, if dw = 0, and we choose holomorphic coordinates zy, ..., z, so that

hij = 6+ _afjze+ Y asiz + O(||z]1%),
k k

then the change of variables z; = w; + ¢;(w,w), where the ¢; are homogeneous
and quadratic in the w’s, changes the linear term of h;; by %% + g{-. Thus afj
is changed by aTa;g;_.,' The condition dw = 0 at p is equivalent to af; = aj; for
all 7,j,k, and thus if we take ¢; = — ) ;, a:-‘j, the coordinates wy, ..., w, satisfy

). . O



