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PREFACE

Two recent developments in the theory of partial differential equa-
tions have caused this book to be written. One is the theory of over-
determined systems of differential equations with constant coefficients,
which depends very heavily on the theory of functions of several com-
plex variables. The other is the solution of the so-called ¢ Neumann
problem, which has made possible a new approach to complex analysis
through methods from the theory of partial differential equations. Solv-
ing the Cousin problems with such methods gives automatically certain
bounds for the solution, which are not easily obtained with the classi-
cal methods, and results of this type are important for the applications
to overdetermined systems of differential equations. It has therefore
seemed natural to give a self-contained exposition of complex analysis
from the point of view of the theory of partial differential equations.
Since we have concentrated on topics which are suitable for such a
treatment, analytic spaces will not be discussed. Instead we have in-
cluded some theorems on Banach algebras as another example of the
applications to analysis of the theory of functions of several complex
variables.

This book is only a slight modification of lecture notes from a course
given by the author at Stanford University during the Spring and Sum-
mer quarters of 1964. The aim has not been to achieve completeness in
any direction but to provide an easy introduction to complex analysis for
readers whose main interest is in analysis. For this reason it has been
assumed only that the reader knows a certain amount of real function
theory, more specifically the elements of integration theory, distribution



PREFACE

theory, functional analysis, and the calculus of differential forms.
Very little algebra is used. In Chapter I the elementary theory of
functions of a single complex variable is recalled briefly. The main
reason for this is to introduce the central problems in a familiar case
as a guide for the general case. Chapter I also includes some classical
facts, such as the Cauchy integral formula for solutions of the inho-
mogeneous Cauchy-Riemann equations, which unfortunately are missing
in many elementary texts. The last section of Chapter I develops the

facts concerning subharmonic functions which are needed. Since most
readers should pass quickly to Chapter II, we wish to mention that

the main point of the Hartogs theorem on separate analyticity has been
inserted there.

Chapter II starts with classical facts concerning power series ex-
pansions, domains of holomorphy, and pseudoconvex domains. Follow-
ing a classical paper of Oka, rewritten in the spirit of differential €qua-
tions, existence theorems for the Cauchy-Riemann equations in Runge
domains are then proved. This is done to illustrate the Oka-Cartan
methods in a very simple case which is sufficient for the main applica-
tions to the theory of Banach algebras. These are given in Chapter III
where a preliminary section recalls the basic facts concerning such alge-
bras. Both Chapter 1II and section 2.7 can be bypassed without any
loss of the continuity.

In Chapter IV the Cauchy-Riemann equations are solved in domains
of holomorphy by means of a variant of the ¢ Neumann problem. At
the same time a solution of the Levi problem is obtained, that is, the
identity of pseudoconvex domains and domains of holomorphy is
shown. These results are extended to Stein manifolds in Chapter V.
It is proved that Stein manifolds can be embedded in complex vector
spaces of high dimension. Chapter V ends with a proof that complex
structures can be defined on a manifold by giving a system of Cauchy-
Riemann equations satisfying a certain integrability condition.

Chapter VII is devoted to the theory of coherent analytic sheaves on
Stein manifolds. The proofs are based on the existence theory for the
Cauchy-Riemann equations established in Chapter V and the local theory
presented in Chapter VI. A final section is devoted to “cohomology
with bounds” for sheaves over Cn with polynomial generators. Used
there are the existence theorems for the Cauchy-Riemann equations
proved in Chapter IV. The book ends with applications to overdeter-
mined systems of differential equations.
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I am greatly indebted to colleagues and students at Stanford Univer-
sity who helped improve the original notes, and also to the National
Science Foundation for supporting the work through grant GP 2426 at
Stanford University during the summer of 1964.

LArRs HORMANDER

Princeton, New Jersey
January 1966

Preface to second edition

The main change in this edition is that section 4.4 has been improved.
A number of references have also been added, particularly to work in the
spirit of that section, and a few misprints have been corrected.

Lund in February 1973 LARS HORMANDER



LIST OF SYMBOLS

[}A is the complement of A (in some larger set understood from the
context).

& is the empty set.

A\B is a notation for 4 N [:B.

A+ B={a+b;aecAbeB}if Aand B are subsets of an 2belian group.

A < B means that 4 is relatively compact in B, that is, 4 is contained
in a compact subset of B.

0A is the boundary of A.

0oA denotes the distinguished boundary when A is a polydisc.

CH<Q), where Q is an open set in R" (or a C* manifold) is the space of k
times continuously differentiable complex valued functions in Q,
0<k< oo

Co*(A), where A is a subset of a C* manifold Q, denotes the set of
functions in CX€) vanishing outside a compact subset of A4.

supp f denotes the support of f, which is the closure of the smallest set
outside which f vanishes (see p. 3).

D is sometimes used as a shorter notation for C,*(Q) (see p. 78).

A(Q) is the space of analytic functions in Q (see pp. 1, 23).

P(Q) is the space of plurisubharmonic functions in Q (see p. 44).

L*(Q,¢) is the space of measurable functions in Q such that (see pp. 78, 113)

Julz = [lul?e*dx < co.

2'(Q) is the space of Schwartz distributions in Q.

&'(€) is the subspace of distributions with compact support.

W?* is the space of L? functions in R¥ with all derivatives of order < s in
the sense of distribution theory belonging to L? (see p. 85).

W4(€,loc), where Q is an open set in a C* manifold, is the set of functions
in Q which agree on every compact subset of a coordinate patch
with some function W* in the coordinate space (see pp. 85, 119).

L*Q,lec) is the same as W°(Q,loc).

Z (p.q» Where Z is any of the previous spaces, denotes the set of all forms
of type (p,q) with coefficients in & (see p. 24).
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0/0z; and 0/0z; (see pp. 1 and 22).

0* = (0/0z,)* - - - (0/0z,)™ (p. 26), where

a is a multiorder = (ay,- - -, ®,) with a; non-negative integers,

| =y +--- + o, and a! = a;!-- - a,!

A denotes exterior multiplication.

d is the exterior differentiation.

0 and 0 are the components of d of type (1,0) and (0,1) (see pp. 22, 24).

u*f, where fis a form and u a map, is defined on p. 23.

I (or J or K) often denotes a multi-index, that is, a sequence (iy,---,i,)
of integers between 1 and n, the dimension of the space considered.
We write |I| = p, and X; indicates that summation is restricted to
multi-indices with i} <i, <--- <i,.

K, is defined on pp. 8, 37, 109.

KRy is defined on p. 46.

K is defined on p. 53.

7, f denotes the germ of f at z (see p. 152).

A, denotes the set of germs at z of analytic functions.

D is the domain of the operator T

R is the range of the operator T.

dJ denotes the Lebesgue measure.

f denotes the Gelfand transform (or Fourier transform) of f.

HP(%, %) is a cohomology group of the covering % with values in the
sheaf # (see p. 177).

HP(X,#) is a cohomology group of the paracompact space X with
values in the sheaf # (see p. 178).

R[z] denotes the set of polynomials in one variable z with coefficients in
the ring R.
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Chapter 1

ANALYTIC FUNCTIONS OF ONE COMPLEX
VARIABLE

Summary. In the first two sections we recall the simplest properties of analytic
functions which follow from the Cauchy integral formula. Then follows a dis-
cussion of approximation theorems (the Runge theorem) and existence theorems
for meromorphic functions (the Mittag-Leffler and Weierstrass theorems). These
are the one-dimensional case of the Cousin problems around which the theory
of analytic functions of several variables has developed. Finally we prove some
basic theorems concerning subharmonic functions.

1.1. Preliminaries. Let u be a complex valued function in C(Q),}
where Q is an open set in the complex plane C, which we identify with
R2. If the real coordinates are denoted by x, y, and z = x + iy, we
have 2x = z + z, 2iy = z — Z, so that the differential of u can be ex-
pressed as a linear combination of dz and dz,

ou ou ou ou

111 du = Mg s
(L14) U= Bt g di= g et o da

where we have used the notations

(1.1.2) Gu_Lou 1wy ou_1fn 125uY
0z 2\0x i dy 0z 2 i

Definition 1.1.1. A function ue C*(Q) is said to be analytic (or holo-
morphic) in Q if 0u/dz =0 in Q (the Cauchy-Riemann equation), or
equivalently if du is proportional to dz. For analytic functions one also
writes u' instead of 0u/0z, thus du = u' dz if u is analytic. The set of all
analytic functions in Q is denoted by A(Q).

tFor the notation used in this book not otherwise explained, see list of symbols on p.ix.

1



2 ANALYTIC FUNCTIONS OF ONE COMPLEX VARIABLE

Examples. (1) For every integer n we have d(z") = nz"~'dz (for
z # 0 if n < 0). Hence every polynomial p(z) = Zf a,z* is an analytic
function, and p'(z) = X} ka,z*~!. (2) If we define e = eX(cos y + isin y),
we obtain d e* = ¢” dz so ¢ is analytic.

Since the differential operator 0/0z is linear, it is obvious that linear
combinations with complex coefficients of analytic functions are analytic.
From the product rule d(uv) = udv + vdu we obtain the product rule
for the operators 0/0z and 6/0z. Hence the product of analytic functions
is analytic.

Let u be analytic in Q and let v be analytic in (an open set containing)
the range of u. Then the function z — v(u(z)) is analytic in €, for the
chain rule gives

dv = v'(u) du = v'(u)'(z) dz,

which also implies that dv/dz = (dv/0u)(0u/0z).

We shall finally study the inverse of an analytic function. First note
that since du = ' dz, the map dz — du is a rotation followed by a
dilation in the ratio || Hence the Jacobian of the map z — u(z), con-
sidered as a map of R? into R?, is equal to |u/|%. If u/(z,) # 0, it follows
therefore from the implicit function theorem that u maps a neighbor-
hood of z, homeomorphically on a neighborhood of u, = u(z,), and
that the inverse map u — z(u) is also continuously differentiable in a
neighborhood of u,. Since u(z(w)) = w, the chain rule gives u'(z(w))dz =
dw, 50 z is an analytic function of w and dz(w)/dw = 1/u'(z(w)).

1.2. Cauchy’s integral formula and its applications. Let w be a boun-
ded open set in C, such that the boundary dw consists of a finite number
of C! Jordan curves. Stokes’ formula gives, if ue C(w),

(1.2.1) J.a udz =Jf du A dz,

or if we note that du A dz = 0u/dzdz A dz = 2i du/dz dx A dy
_ a5 5 e _ _
122 [ wdz=2i | f oufozdx A dy = | fw du/oz dz A de.

(This can of course be proved directly by integrating the right-hand
side.) Here dw is oriented so that w lies to the left of dw. An immediate
consequence is that [,, udz =0 if ue C'(®) and u is analytic in w.
Moreover, we obtain Cauchy’s integral formula:
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Theorem 1.2.1. If ue CY(@), we have
(123) () = (27zi)‘1{Lw Z”(_Z)C dz +fL f“ﬁaz dz A dz}, lew.

Proof. Put o, = {z;zew, |z — (| > ¢} where 0 < ¢ < the distance
from ( to cw If we apply (1.2.2) to u(z)/(z — () and note that 1/(z — ()
is analytic in w,, we obtain

Jf oufoz(z — )~ 'dz ANdz = J; u(z)(z — )~ 'dz —f:" u(l + e€')i do.

Since (z — {)” ! is integrable over w and u is continuous at {, we obtain
(1.2.3) by letting ¢ — 0.
Conversely, we shall prove

Theorem 1.2.2. If u is a measure with compact supportt in C, the
integral

uQ) = [ = 0 dulz)

defines an analytic C* function outside the support of u. In any open
set w where dy = (2ni)”" '@ dz A dz for some ¢ € C¥(w), we have u e C¥w)
and ou/oz = @ ifk > 1.

Proof. That ue C* outside the support K of u is obvious since
(z—¢) "' is a C* function of (z,{) when ze K and (e GK, and since
oz — {)7 '/ = 0 when { # z, the analyticity follows by differentiation
under the sign of integration. To prove the second statement we first
assume that @ = R?. After a change of variables we can write

u@) = —ui) " [l — 227" dz A dz.
Since z™! is integrable on every compact set, it is Jegitimate to differ-
entiate under the sign of integration at most k times and the integrals
obtained are continuous. Hence ue C* and

oujol = —ui)"'[[op( — 2/t 2" dz A dz
= (2mi)~! f f (z — O ' 09(2)/0z dz A da.

Application of Theorem 1.2.1 with u replaced by ¢ and w equal to a
disc containing the support of ¢ now gives du/d{ = ¢. Finally, if w is
arbitrary, we can, for every z, € w, choose a function ¥ € C,*w) which

1

T The support of a measure or function is the smallest closed set outside which it is
equal to 0.
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is equal to 1 in a neighborhood V of z,. If u; = Yypand p, = (1 — Y)u
we have u = u, + u, where

uf0) = [z = 0" dug0)

Since u; is equal to (2mi)™'Ypdz A dz and Yo e C % R?), we have
u,eC* and 0u,/d( = Yo. Since p, vanishes in V, it follows that
ue CXV) and that 0u/d = ¢ in V. The proof is complete.

Corollary 1.2.3. Every ue AQ) is in C*(Q). Hence u' e AQ) if
ue AQ).
Proof. This follows from Theorems 1.2.1 and 1.2.2 applied to discs

o with @ = Q.
More precise information is given in the next theorem.

Theorem 1.2.4. For every compact set K = Q and every open neigh-
borhood w = Q of K there are constants C »J=0,1,---, such that

(1.2.4) sup u)| < Cjllu)|Liwy  ueA®),

where uY) = ¢iu/oz’.

Proof. Choose y e C,*(w) so that ¥ = 1 in a neighborhood of K.
If ue A(Q), we have d(Yu)/0z = udy/oz and consequently Theorem 1.2.1
applied to yu gives

(1.2.5) Y(Ou() = Qni)~! f u(z) 0y )0z (z — )~V dz A dz.

Since ¥ = 1 in a neighborhood of K and |z — {| is bounded from below
when (€ K and z is in the support of dy/dz, differentiation of (1.2.5)
leads immediately to (1.2.4).

Corollary 1.2.5. If u,e A(Q) and u, » u when n — oo, uniformly on
compact subsets of €, it follows that u e A(Q).

Proof. Application of (1.2.4) to u, — u,, shows that 0u,/0z converges
uniformly. Since du,/0z = 0, it follows that du,/0x and Ju,/dy converge
uniformly on compact sets. Hence ue C! and du/dz = lim 0u,/0z = 0.

Corollary 1.2.6. (Stieltjes-Vitali) If u,e A(Q) and the sequence |u,| is
uniformly bounded on every compact subset of €, there is a subsequence
u,, converging uniformly on every compact subset of Q to a limit ue A(Q).

Proof. As in Corollary 1.2.5, we obtain from Theorem 1.2.4 that
there are uniform bounds for the first-order derivatives of u, on any
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compact set. Hence this sequence is equicontinuous and the corollary
follows from Ascoli’s theorem and Corollary 1.2.5.

Corollary 1.2.7. The sum of a power series
=Y 82"
0

is analytic in the interior of the circle of convergence.
Proof. The series converges uniformly in every smaller disc.

Theorem 1.2.8. If u is analytic in Q = {z; |z| < r}, we have

@

u(z) = ), u™(0) z"/n!

(0]
with uniform convergence on every compact subset of Q.

Proof. Letr, <r, <r. We have by (1.2.3)

(1.2.6) u(z) = (2mi) ! [ o, MONE = 2L, |z < 1y
Since

€27 =32 Elsne l=r

and the series is uniformly and absolutely convergent, the theorem
follows if we integrate term by term, noting that (1.2.6) gives

u™(0) = n!(2mi)” IJ' w " tae.

Corollary 1.2.9. (The uniqueness of analytic continuation.) If ue A(Q)
and there is some point z in ) where

(1.2.7) u®(z) =0, forallk >0,
it follows that u = 0 in Q if Q is connected.

Proof. The set of all z e Q satisfying (1.2.7) is obviously closed in Q,
and by Theorem 1.2.8 it is also open. Since it is non-empty by assump-
tion, it must be equal to Q.

Corollary 1.2.10. If u is analytic in the disc Q = {z; |z| < r} and if
u is not identically 0, one can write u in one and only one way in the form

u(z) = z"v(z)
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where n is an integer >0 and ve A(Q), v(0) # O (which means that 1/v
is also analytic in a neighborhood of 0).

Proof. The proof is obvious.

Theorem 1.2.11. If u is analytic in {z; |z — zo| <r} = Q and if
|u(z)| < |u(zo)| when z € Q, then u is constant in Q.

Proof. We may assume that u(z,) # 0. Since
2n .
u(zo) = (2m)" l-[o u(zy + pe'®)do

when 0 < p < r, we obtain
2n 3
[ J (1= ulzo + pe)fulz)) db = 0.

The real part of the integrand is > 0 and = 0 only when u(zy) =
u(zy + pe'®). This proves the theorem.

Corollary 1.2.12. (Maximum principle.) Let Q be bounded and let
ue C(Q) be analytic in Q. Then the maximum of |u| in Q is attained on
the boundary.

Proof. If the maximum is attained in an interior point, Theorem
1.2.11 and Corollary 1.2.9 prove that u is constant in the component of
Q containing that point and therefore |u| assumes the same value at
some boundary point.

1.3. The Runge approximation theorem. From Theorem 1.2.8 it fol-
lows in particular that a function which is analytic in a disc can be
approximated uniformly by polynomials in z on any smaller disc. In
particular, every entire function can be approximated by polynomials
uniformly on every compact set. We shall now give a general approxi-
mation theorem.

Theorem 1.3.1. (Runge.) Let Q be an open set in C and K a compact
subset of Q. The following conditions on Q and on K are equivalent :

(a) Every function which is analytic in a neighborhood of K can be
approximated uniformly on K by functions in A(Q).

(b) The open set QNK = Qn [} K has no component which is relatively
compact in Q.

(c) For every ze Q\K there is a function f € A(Q) such that

(1.3.1) |f(2)| > Sl’l(p|f|.
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By the remarks preceding the theorem we obtain the following special
case by taking Q = C.

Corollary 1.3.2. Every function which is analytic in a neighborhood
of the compact set K can be approximated by polynomials uniformly on
K if and only if c K is connected, or equivalently, for every z e GK there
is a polynomial f such that (1.3.1) is valid.

Proof of Theorem 1.3.1. We first prove that (c)=>(b) and that
(@) = (b). Thus assume that (b) is not valid, that is, that Q\K has a
component O such that O is compact and <Q Then the boundary of
O is a subset of K and the maximum principle gives

(1.32) sup If] < sup Ifl,  feAQ),

which contradicts (c). If (a) were valid we could for every f which is
analytic in a neighborhood of K choose f, € A(Q) so that f, — funiformly
on K. Application of (1.3.2) to f, — f,, proves that f, converges uniformly
in O to a limit F. We have F = S on the boundary of 0, and F is analytic
in O and continuous in 0. In particular, we can choose f@)=1/(z= 0
if {€ 0, and then we have (z — {F(z) = 1 on the boundary of O, hence
(z — {)F(z2) = 1 in O. This gives a contradiction when z — L.

To prove that (b) = (a) it suffices to show that every measure u on K
which is orthogonal to A(Q) is also orthogonal to every function f
which is analytic in a neighborhood of K, for the theorem is then a
consequence of the Hahn-Banach theorem. Set

o0 =[G -0 "duz.  telk.
By Theorem 1.2.2, ¢ is analytic in [} K, and when (e 02 we have
() = k!f(z =07  'du(z) =0 for every k,

for the function z—(z—{)7* ! is analytic in Q if te(Q Hence
¢ =0 in every component of [JK which intersects 0Q. Since
fz"du(z) = 0 for every n and (z — {)”! can be expanded in a power
series in z which converges uniformly on K if [{| > sup, |z], we also
have ¢ = 0 in the unbounded component of [}K. Now (b) guarantees
that Q\K has no component which is relatively compact in Q and
we conclude that ¢ = 0 in [} K.

Choose a function ¥ e C,*(w), where w is a neighborhood of K in
which f is analytic, and choose ¥ so that ¥ = 1 on K. Then we have

@) = ¥@f (D) = @mi) [ [ fOWQOREC — 27 dd A, zeK.



