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PREFACE

This book is about numerical methods for problems of finding the
largest or smallest values which can be attained by functions of seve-
ral real variables subject to several inequality constraints. If such
problems involve continuously differentiable functions, they can be
solved by a variety of methods well documented in the literature. We
are concerned with more general problems in which the functions are
locally Lipschitz continuous,but not necessarily differentiable or
convex. More succintly, this book is about numerical methods for non-
differentiable optimization.

Nondifferentiable optimization, also called nonsmooth optimizat-
ion, has many actual and potential applications in industry and science.
For this reason, a great deal of effort has been devoted to it during
the last decade. Most research has gone into the theory of nonsmooth
optimization, while surprisingly few algorithms have been proposed,
these mainly by C.Lemaréchal, R.Mifflin and P.Wolfe. Frequently such
algorithms are conceptual, since their storage and work per iteration
grow infinitely in the course of calculations. Also their convergence
properties are usually weaker than those of classical methods for
smooth optimization problems.

This book gives a complete state-of-the-art in general-purpose
methods of descent for nonsmooth minimization. The methods use piece-
wise linear approximations to the problem functions constructed from
several subgradients evaluated at certain trial points. At each iterat-
ion, a search direction is found by solving a quadratic -programming
subproblem and then a line search produces both the next improved
approximation to a solution and a new trial point so as to detect gra-
dient discontinuities. The algorithms converge to points satisfying
necessary optimality conditions. Also they are widely applicable, since
they require only a weak semismoothness hypothesis on the problem funct-
ions which is 1likely to hold in most applications.

A unifying theme of this book is the use of subgradient selection
and aggregation techniques in the construction of methods for nondiffe-
rentiable optimization. It is shown that these techniques give rise in
a totally systematic manner to new implementable and globally converg-
ent modifications and extensions of all the most promising algorithms
which have been recently proposed. In effect, this book should give the
reader a feeling for the way in which the subject has developed and is
developing, even though it mainly reflects the author”s research.

This book does not discuss methods without a monotonic descent
(or ascent) property, which have been developed in the Soviet Union.
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The reason is that the subject of their effective implementations is
still a mystery. Moreover, these subgradient methods are well descri-
bed in the monograph of Shor (1979). We refer the reader to Shor’s
excellent book (its English translation was published by Springer-
Verlag in 1985) for an extensive discussion of specific nondifferent-
iable optimization p;sblems that arise in applications. Due to space
limitations, such applications will not be treated in this book.

In order to make the contents of this book accessible to as wide
a range of readers as possible, our analysis of algorithms will use
only a few results from nonsmooth optimization theory. These, as well
as certain other results that may help the reader in applications, are
briefly reviewed in the introductory chapter, which also contains a
review of representative existing algorithms. The reader who has basic
familiarity with nonsmooth functions may skip this chapter and start
reading from Chapter 2, where methods for unconstrained convex minimi-
zation are described in detail. The basic constructions of Chapter 2
are extended to the unconstrained nonconvex case in two fundamentally
different ways in Chapters 3 and 4, giving rise to competitive methods.
Algorithms for constrained convex problems are treated in Chapter 5,
and their extensions to the nonconvex case are described in Chapter 6.
Chapter 7 presents new versions of the bundle method of Lemaréchal and
its extensions to constrained and nonconvex problems. Chapter 8 con-
tains a few numerical results.

The book should enable research workers in various branches of
science and engineering to use methods for nondifferentiable optimizat-
ion more efficiently. Although no computer codes are given in the text,
the methods are described unambiguously, so computer programs may rea-
dily be written.

The author would like to thank Claude Lemaréchal and Dr. A.Rusz-
czyhski for introducing him to the field of nonsmooth optimization, and
Prof. K.Malanowski for suggesting the idea of the book. Without A.Rusz-
czyhski”s continuing help and encouragement this book would not have
been written. Part of the results of this book were obtained when the
author worked for his doctoral dissertation under the supervision of
Prof. A.P.Wierzbicki at the Institute of Automatic Control of the Tech-
nical University of Warsaw. The help of Prof. R.Kulikowski and Prof.
J.Hotubiec from the Systems Research Institute of the Polish Academy of
Sciences, where this book was written, is gratefully acknowledged.
Finally, the author wishes to thank Mrs. I.Forowicz and Mrs. E.Grudzifi-

ska for patiently typing the manuscript.
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CHAPTER 1

Fundamentals

1. Introduction

The nonlinear programming problem, also known as the mathematical

programming problem, can be taken to have the form
P : minimize f(x), subject to Fi(x) <0 for i=1,...,m,

where the objective function f and the constraint functions Fi are
real-valued functions defined on the N-dimensional Euclidean space RN.
The value of m2>0 is finite; when m=0 the problem is unconstrained.
Often the optimization problem P is smooth: the problem functions £
and Fi are continuously differentiable, i.e. they have continuous gra-
dients vf and VFi, i=l,...,m. But in many applications this is not

true. Nonsmooth problems are the subject of nonsmooth optimization, also

called nondifferentiable optimization.

Owing to actual and potential applications in industry and science,
recently much research has been conducted in the area of nonsmooth opti-
mization both in the East (see the excellent monographs by Gupal (1979),
Nurminski (1979) and Shor (1979)) and in the West (see the comprehensive
bibliographies of Gwinner (1981) and Nurminski (1982)).

Nonsmooth problems that arise in applications have certain common
features. They are more complex and have poorer analytical properties
than standard mathematical programming problems, cf. (Bazaraa and Shetty,
1979; Pshenichny and Danilin, 1975). A single evaluation of the problem
functions usually requires solutions of auxiliary optimization subprob-
lems, In particular, it is very common to encounter a nondifferentiable
function which is the pointwise supremum of a collection of functions that
may themselves be differentiable - a max function.

Functions with discontinuous gradients, such as max functions, cannot
be minimized by classical nonlinear programming algorithms. This observa-
tion applies both to gradient-type algorithms (the method of steepest descent,
conjugate direction methods, quasi-Newton methods) and to direct search
methods which do not require calculation of derivatives (the method of
Nelder and Mead, the method of Powell, etc.), see (Lemarechal, 1978 and
1982; Wolfe, 1975).

This work is concerned with numerical methods for finding (approxi-
mate) solutions to problem P when the problem functions are locally Lip-

schitzian, i.e. Lipschitz continuous on each bounded subset of RN, but not



necessarily differentiable.

The advent of F.H.Clarke’s (1975} analysis of locally Lipschitzian
functions provided a unified approach to both nondifferentiable and non-
convex problems (Clarke, 1976). Clarke’s subdifferential analysis, the
pertinent part of which is briefly reviewed in the following section, suf-
fices for establishing properties of a vast class of optimization pro-
blems that arise in applications (Pshenichny, 1980; Rockafellar, 1978).

2. Basic Results of Nondifferentiable Optimization Theory

In this section we describe general properties of nondifferentiable
optimization problems that are the subject of this work. Basic familia-
rity is, however, assumed. Source material may be found in (Clarke, 1975;
Clarke, 1976; Rockafellar, 1970; Rockafellar, 1978; Rockafellar, 1981).

The section is organized as follows. First, we review concepts of
differentiability and elementary properties of the Clarke subdifferen-
tial. The proofs are omitted, because only simple results, such as Lemma
2.2, will be used in subsequent chapters. Other results, in particular
the calculus of subgradients, should help the reader who is mainly in-
terested in applications. Secondly, we study convex first order approxi-
mations to nondifferentiable functions. Such approximations are then used
for deriving necessary conditions of optimality for nondifferentiable
problems. Our approach is elementary and may appear artificial. However,
it yields useful interpretations of the algorithms described in subse~

quent chapters.

The following notation is used. We denote by «<:,:> and |-:|, res-
pectively, the usual inner product and norm in finite-dimensional, real
Euclidean space. RV denotes Euclidean space of dimension N<«. We use Xj

to denote the i-th component of the vector x. Thus

N
<X,¥> = I XY and lx[=<x,x> 12 for x,yeRN. Superscripts are used
i=1
to denote different vectors, e.g. xl and x2. All vectors are column vec-
tors. However, for convenience a column vector in RN+n is sometimes de-

noted by (x,y) even though x and y are column vectors in RN and Rn,

respectively. [x,y] denotes the line segment joining x and y in By,

N

i.e. [x,y]={zeR :z=ax+(1-1)y for some A satisfying 0 <X <1}.

A set ScRY is called convex if [x,y]Jcs for all x and vy be-

longing to S. A linear combination 2 A:xJ  is called a convex combina-
j=1 k
tion of points xl,...,xk in RN if each Aj >0 and I Aj=l. The convex
j=1
hull of a set Sc:RN, denoted conv S, is the set of all convex combina-




tions of points in S. conv S is the smallest convex set containing S,
and S is convex if and only if S=conv S. An important property of con-

vex hulls is described in

Lemma 2.1 (Caratheodory’s theorem; see Theorem 17.1 in (Rockafellar,
1970)).

If ScRY then xeconv S if and only if x 1is expressible as a con-

vex combination of N+1 (not necessarily different) points of S.

Any nonzero vector ge RN and number vy define a hyperplane
N =
H = {xeR :<g,x>= v},

which is a translation of the (N-1)-dimensional subspace {xe RN:<g,x>=0}

of RN. H divides RN into two closed half-spaces ({x& RN: < g,x>< v} and

{x erN: <g,x> 2> y}, respectively. We say that H is a supporting hyper-

pPlane to a set scrRN at Xes if <g,X>=y and <g,Xx><y for all
XeS. Any closed convex set S can be described as an intersection of all

the closed half-spaces that contain S.
We use the set notation

Sl+S2 = {zl+zzzzle Sl,zze Sz},

conv{sl: i=1,2} = conv{z: zESlu SZ}

for any subsets Sl and S2 of RN.

A function f:RN — R 1is called convex if
f()‘xl+(l->‘)x2)5Af(x1)+(1->\)f(x2) for all )\E[O,l] and xl,xze R.
This is equivalent to the epigraph of f

epi £ = {(x,8)e RV 1:p »£(x)}

N+1

being a convex subset of R . A function f:RN — Rl

is called con-
cave if the function (-f)(x)=-f(x) 1is convex. If Fj_:RN — R 1is con-
vex and Aizo for each 1i=1,...,k, then the functions

k
¢1(X) '—'.Z Alfi(x)’
A=1 (2.1)

¢2(x) = max {fi(x): i=1,...,k}

are convex.
A function f:RN — R 1is strictly convex if f(xxl+(1—>‘)x2) <
XE(xl)+(1—A)f(x2) for all xre(0,1) and x1#x2. For instance, the




. 2, .
function |.|” is strictly convex.
A function f: RN —» R is said to be locally Lipschitzian if for

each bounded subset B of RN  there exists a Lipschitz constant
L=L(B) <~ such that
“|

|£(xl)-£(x?)] < o x'-x for all x!,x’cB. (2.2)

Then in particular f is continuous. Examples of locally Lipschitzian
functions include continuously differentiable functions, convex functions,
concave functions and any linear combination or pointwise maximum of a
finite collection of such functions, cf. (2.1).

Following (Rockafellar, 1978), we shall now describe differentiabi-
lity properties of locally Lipschitzian functions. Henceforth let £ de-
note a function satisfying (2.2) and let x be an interior point of B,
i.e. xeint B.

The Clarke generalized directional derivative of f at x in a

direction d

£%(x;d) = lim sup [f(y+td)—f(y)]/t (Z+3)
y+x,t+0

is a finite, convex function of d and £°(x;d) < L|d|. The Dini upper

directional derivative of f at x in a direction d

£0(x;d) = lim sup [f(x+td)-£(x)]/t (2.4)
t40

exists for each deERN and satisfies
F(x+td) < £(x)+t£2(x;d)+o(t), (2.5)
where o(t)/t»0 as t+0. The limit

£7(x;d) = lim [£(x+td)-£(x)] /t (2.6)

1
t+0

is called the (one-sided) directional derivative of f at x with re-

spect to d, if it exists. The two-sided derivative (the Gateaux derivative)

corresponds to the case f'(x;-d)=-f’(x;d). Clearly,

£°%(x;d),
D

£P(x;q)

1A

(2.7)

f'(x;d) < £

IA

(X7d)r
whenever f’(x;d) exists.
If f’'(x;d) is linear in d (Gateaux differentiable at x)

£/(x;d) =<gg,d> for all der’, (2.8)



then the vector 9g is called the gradient of f at x and denoted by

vf(x). The components of Vf(x)=(%§—(x),...,%%—(x)) are the coordinate-
1 N

wise two-sided partial derivatives of f at x. The function f is (Frechet)
differentiable at x if

£(x+d)=£(x)+<VE(x) ,d>+o(|d|) for all deRr" , (2.9)

where o(t)/t+0 as t+0. The above relation is equivalent to

lim [£(x+td’)-£(x)]/t=<vf(x),d> for all deR\. (2.10)
d’-+d,t+0

If
lim [f(y+td)-f(y)]/t = <Vf(x), d> for all 4 in RN , (2.11)
y+x,t+0

then f is called strictly differentiable at x. In this case f is diffe-

rentiable at x and the gradient Vf:RN+RN is continuous at x relative to

its domain

dom Vf = {y1ERN: f is differentiable at y}

It is known that a locally Lipschitzian function f:RN+R is diffe-
rentiable at almost all points xesRN, and moreover that the gradient
mapping Vf is locally bounded on its domain. Suppose that (2.2) holds

for some neighborhood B of a point xe RN. Then

<VE(y),d> = £'(y;d) = lim[f(y+td)-£(y)]/t < L|4|
t+0

for all yeBndom Vf and deRN, and this implies
|vE(y)|< L for all yeBn dom Vf. (2.12)

Since dom Vf is dense in B, there exist sequences {yj} such that f is
differentiable at yJ and yJ+x. The corresponding sequence of gradients
{Vf(yj)} is bounded and has accumulation points (each being the limit

of some convergent subsequence). It follows that the set

Mf(x) = {zeRN: vE(yl)+z for some sequence yJl+z with £ diffe-
rentiable at yj} (2.13a)

is nonempty, bounded and closed. The set

3f(x) = conv Mf(x) (2.13b)



is called the subdifferential of f at x (called the generalized gradient

by Clarke (1975)). Each element gfeaf(x) is called a subgradient of f at
X. Thus

af(x)=conv{lime(yJ):yJax, f differentiable at yj}. (2.14)
In particular therefore, 3f(x)=-3(-f)(x). Three immediate consequences

of the definition are listed in

Lemma 2.2. (i) 3f(x) is a nonnempty convex compact set.
(ii) The point-to-set mapping 3f(°) is locally bounded (bounded on bound-
ed subsets of RV), i.e. if BcR' is bounded then the set

{gfe 9f(y):ycB} is bounded.
(iii) 8f(+) is upper semicontinuous, i.e. if a sequence {yj} converges

to x and g%e af(yj) for each j then each accumulation point 9¢ of

{g%} satisfies gfeaf(x).

In general, 3f(x) does not reduce to Vf(x) when the gradient Vf

is discontinuous at x.

Lemma 2.3. The following are equivalent:

(1) 9f(x) consists of a single vector;

(ii) Vf(x) exists and "f is continuous at x relative to dom Vf;
(iii) f is strictly differentiable at x.

Moreover, when these properties hold one has 3f(x)={Vf(x)}.

Frequently 3f(x) is a singleton for almost every x. A locally Lip-
schitzian function f:RN+R is subdifferentially regular at xeRN if for

every deRN the ordinary directional derivative (2.6) exists and coinci-

des with the generalized one in (2.3):
£'(x;d) = £%x;d) for all d. (2.15)

If (2.15) holds at each x:ERN then 3f(x) is actually single-valued at
almost every x. Below we give two important examples of subdifferential-

ly regular functions.



Lemma 2.4. If £ is convex then f is subdifferentially regular and

£f'(x;d) = max{<gf,d> i gg€ 3f(x)} for all x,d. (2.16)

Lemma 2.5. Suppose that

f(x) = max{fu(x): ueU} for all xesRN, (2.17)

where the index set U is a compact topological space (e.g. a finite set
in the discrete topology), each fu is locally Lipschitzian, uniformly
for u in U, and the mappings fu(x) and afu(x) are upper semicontinuous
in (x,u) (e.g. each fu is a differentiable function such that fu(x) and
Vfu(x) depend continuously on (x,u)). Let

U(x) = {ueU: fu(x) = f(x)}. (2.18)
Then f is locally Lipschitzian and

9f(x) c conv {afu(x) : ueU(x)}. (2.19)

If each fu is subdifferentially regular at x, then so is f, equality
holds in (2.19), and

£f'(x;d) = max{<g ,d>: gueafu(x),ueU(x)} for all d. (2.20)

Corollary 2.6. Suppose that
f(x) = max{fi(x) : ie 1} for all x in RV ; (2.21)

where the index set I is finite, and let I(x)={ieI:fi(x)=f(x)}.
(i) If each f, is continuously differentiable then

£f'(x;d) = max{<vfi(x),d> : ieI(x)} for all 4,
(2.22)
af(x) = conv{vfi(x): ieI(x)}.
(ii) If each f1 is convex then
f'(x;d) = max{<gf ,d>: 9¢ eafi(x), ieI(x)} for all 4,
i i (2.23)

af(x) = conv{gf e afi(x): ieI(x)}.
i



When f is smooth, there exists an apparatus for computing Vf in
terms of the derivatives of other functions from which f is composed. The
calculus of subgradients, which generalizes rules like V(f1+f2)(x) =
= Vfl(x)+ Vf2(x), is based on the following results.

Lemma 2.7. Let g:R“+R and hi:RN+R, i=1l,...,n, be locally Lipschitzian.
Let h(x)=(hl(x),...,hn(x) and (goh)(x)=g(h(x)) for all x€EN. Then goh

is locally Lipschitzian and

3(goh}(x) c conv {igl uiahi(x) : (ul,...,un)eag(h(x))}. (2.24)
Moreover, equality holds in (2.24) if one of the following is satisfied:
(i) g is subdifferentially regqgular at h(x), each hi is subdifferentially
regular at x and ag(h(x))c:Rz (Ri ={zeR": z,20 for all il});

(ii) g is subdifferentially regular at h(x) and each hi is continuously
differentiable at x;

(iii) Each hi is continuously differentiable at x and either g (or - g)
is subdifferentially regular at h(x) or the Jacobian matrix of h at x
is surjective;

(iv) n=1, g is continuously differentiable at h(x) or g (or - g) is
subdifferentially regular at h(x) and h is continuously differentiable
at x. In cases (ii) - (iv) the symbol "conv" is superfluous in (2.24).

If (ii) holds then goh is subdifferentially regular at x.

Corollary 2.8. Suppose that f1 and f2 are locally Lipschitzian on RN.
N

For each xeR let (f1+f2)(x)=fl(x)+f2(x), (flfz)(x)=flhdf2(x) and

(fl/fz)(x)=fl(x)/f2(x) if fz(x)#o. Then

a(fl+f2)(x)cafl(x)+af2(x), (2.25a)

a(flfz)(x)<: fz(x) afl(x)+fl(x)af2(x), (2.25b)

S E; /85T () L [£,(x)af (x)-£, (x)3f,(x)] . (2.25¢)
(£,(x))

Equality holds in (2.25a) if each fi is subdifferentially regular at x,

and in (2.25b) if in addition fi(x)>0.

Clarke (1975) established the following crucial relations between

the subdifferential and the generalized directional derivatives of a lo-



cally Lipschitzian function f defined on B
fo(x;d)= max{<gf,d>:gfe 2f(x)} for all x,4d, (2.26)
3f(x)={gfe rY: <gf,d> 5f°(x;d) for all d} for all x. (2.27)

We shall now interpret these relations in geometric terms. In what fol-

lows let x be a fixed point in RN.

First, suppose that f is continuously differentiable at x. From
Lemma 2.3, (2.26) and (2.8) we have

af(x) = {vE(x)}, (2.28a)
£9(x;d) = £'(x;d) = <Vf(x),d> for all d. (2.28b)

Suppose that vf(x)#0. Then vf(x) corresponds to the hyperplane

Hoe = {(2,8) € sVl g = f(x) + <vf(x),z-x>}

being tangent to the graph of f
graph f = {(z,B) e rRV*l.g = f(z)}

at the point (x,f(x)). Here B denotes the "vertical" coordinate of

a point (x,s)eERN+l. Moreover, the hyperplane

Ho = {z e R <Vf(x),z-x> = 0}

is tangent at x to the contour of f at x
= N -
C= {zeR: f(z) = f(x)}.

vEf(x) is perpendicular to C at x and is the direction of steepest

ascent for f at x. Define the following linearization of f at x
T(z) = £(x) + <Vf(x),z-x>  for all z in RV (2.29)

and observe that vf(z)=vf(x) for all z (x is fixed). Therefore this
linearization has the same differentiability properties as f at x in

the sense that
of(x) = of(x), (2.30a)
TO(x;d) = ' (x;d) = £9(x;d) for all 4, (2.30b)

cf. (2.28). In particular, by (2.28a), (2.9) and (2.30b), for any

d e RN we have



