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TRANSLATOR’S NOTE

HIS translation is taken from Pro-
| fessor Bloch’s work, dated 1921. The
original text has, I hope, been faithfully
reproduced with a few minor exceptions.
In one or two cases, particularly in the sec-
tions dealing with statistical mechanics and
probability, the mathematical presentation
has been slightly modified where I deemed it
advisable in the interest of clearness, but the
method has not been changed in any way.
Here and there changes have been made In
the numerical data in the light of more recent
work. At the request of the publishers of
this translation I have prepared a more com-
plete bibliography of the subject, which ap-
pears at the end of the book, including a list
of the more important original papers con-
cerning subjects which commonly find no
place in the average text-book. It is hoped
the references included will serve as a ““ point
d’appui ” for further study.

P. A.S.

NorTON HALL
NoRrTON-ON-TEES



PREFACE

DISCONTINUOUS STRUCTURE OF
MATTER

FUNDAMENTAL HYPOTHESES

HE kinetic theory of gases is merely

I a branch—albeit the most perfect and
most completely developed branch—of

the molecular theory of matter. It states
that the continuity of matter, solid, liquid, or
gaseous, is only apparent, hiding a real discon-
tinuity beyond the limits of our perception.
Matter, in all its states, is an agglomeration
of very small, distinct particles, whose mutual
interactions and movements depend on tem-
perature and pressure, forming an assembly
which resembles a continuous medium. In
solids the particles oscillate comparatively
feebly about their mean positions of equili-
brium. In liquids their movements are less
restricted and give place to free gliding motions
of the particles relative to one another : their
mutual interaction still preserves a cohesion
of the whole and consequently an approxi-
mately constant volume, but its shape no
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vii THE KINETIC THEORY OF GASES

" longer remains invariable as in the case of
solids. Finally, in gases, the particles escape
almost completely from their mutual inter-
actions, cohesion becomes very weak or neg-
ligible, and henceforth the movements which
animate the particles become practically rec-
tilinear and are only disturbed by incessant
collisions with other particles or with the wall
of the containing vessel. These latter colli-
sions are the origin of the pressure which the
gas exerts on the wall ; the freedom of mole-
cular motions, on the other hand, explains
the diffusion of the gas into every space open
to it or into another gas.

The theory of gases is more easily developed
than that of the other states of matter; the
almost complete absence of cohesive forces,
the unknown law of which plays an essential
role in the condensed states, and the rela-
tively disperse condition of the molecules,
which may, as a first approximation, be con-
sidered as material points, introduce great
simplifications in our reasoning and calcula-
tion. These we shall consider at some length,
only discussing the theory of liquids and solids
as a subsidiary study.

From the physical point of view, the essen-
tial feature of the theory is that heat is no
longer considered as a variety of energy dis-
tinct from mechanical energy. It is the mole-
cular agitation, or more precisely, the kinetic
energy of the molecules, which represents the
major part of the heat contained in the gas.
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The surplus is accounted for by the potential
energy of intermolecular attractions. We see
then that the principle of the equivalence of
heat and work is, in a sense, visualised from
the start by the very conception we hold of
heat itself. Hence the name ‘‘ mechanical
theory of gases’ which is sometimes given
to this doctrine.

On the other hand, since direct experiment
does not permit us to distinguish the mole-
cules and their individual movements, the
observable properties of gases can only be
mean properties, attributable, that is to say,
to the simultaneous and more or less similar
actions of an immense number of molecules.
The physical aim of the theory is to deduce
these mean properties from complicated and
apparently inextricable molecular motions.

The mathematical calculations to which we
are led should, therefore, bear upon these
motions, the details of which are unknown to
us and whose general characters alone we are
able to imagine. They should lead to average
results which will depend upon these general
characteristics only. In a word, we must
appeal to the calculus of probabilities. The
mechanics of gases are statistical, and the
physical laws to which they lead are statis-
tical laws. We cannot, therefore, hope to
obtain laws of certainty, but only laws which
are very probable or practically -certain.
This character of the theory, which at some
periods has brought it into disfavour, should,
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on the contrary, be regarded as a most sug-
gestive one. As we shall see, it has enabled
a new light to be thrown on the second law
of thermodynamics, and has cleared our ideas
on the fundamental nature of this principle.
Unfortunately, the extreme complication of
the molecular motions brings with it a cor-
responding complication in the mathematical
calculation which is necessary for the complete
and rigorous development of the theory. This
complication is such that it frequently neces-
sitates a resort to simplifications which are
sometimes hazardous as a means of pursuing
the calculation. It is possible, however, to
define at each stage the degree of rigour
claimed, and, since by such summary pro-
cedure, we are led to results whose agreement
with experiment is almost surprising, there is
no reason to doubt the accuracy of the prin-
ciples. In spite of difficulties we are unable to
deny, it is very satisfactory on the whole that
we may consider the theory as built upon
foundations which are almost unassailable.
The small compass of this volume forbid-
ding all purely mathematical developments,
we shall be content to study the simplest
hypotheses, for example that of elastic colli-
sions, and to arrange the results in logical
order ; in a word, to expound the sequence of
ideas rather than the detail of calculations.
We shall refer the reader anxious to extend
his knowledge to the works mentioned in the
bibliography at the end of the volume.
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A few historical notes may be useful to con-
clude the generalities which have gone before.
Physicists do not consider a theory properly
scientific unless it has adequate experimental
foundations. It does not appear, therefore,
to be of much interest to probe classical anti-
quity or Greek and Roman philosophies in
a search for the origin of atomistic theories.
Precise knowledge of the experimental laws
of the compressibility of gases dates in reality
only from Boyle and Marriotte. It is only
just, however, to consider Daniel Bernouilli
(1730) as the founder of the modern kinetic
theory ; it was he, in fact, who first explained
the law of Marriotte by molecular motions.
The complete development of atomism, how-
ever, only began with the discovery of the
fundamental laws of chemistry, in particular
the laws of -Dalton, Avogadro, and Gay-
Lussac, which confirmed the atomistic doc-
trine at the beginning of the nineteenth cen-
tury. Since that time progress has been rapid.
But it was principally in the middle of the
nineteenth century, with Maxwell and Claus-
ius, that the theory received the firm mathe-
matical basis on which it rests to-day. More
recently the works of Boltzmann, Kirchhoff,
Van der Waals, and, among our contempo-
raries, those of Lord Rayleigh, H. A. Lorentz,
Brillouin, etc., have given it a breadth which,
going hand in hand with experimental pro-
gress, has made it one of the most vital
branches of theoretical physics.
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THE KINETIC THEORY
OF GASES

CHAPTER 1

DISTRIBUTION OF VELOCITIES. LAWS
OF PERFECT GASES

1. Molecular Structure of a Gas.—The mole-
cules which constitute a gaseous medium should be
considered as particles of extremely small dimen-
sions, animated by rapid and unceasing movements
-1in all directions. The movements of these particles
remain sensibly rectilinear and uniform so long as
they do not pass sufficiently near one another to be
deflected by their mutual interactions or by their
collisions. At the moment when an accidental
‘““ encounter ”’ of this nature is produced, the veloci-
ties of the molecules concerned suffer abrupt changes
in magnitude and in direction, changes the duration of
which are very short compared with the time during
which the molecules move freely. The trajectories
of the molecules must therefore be represented as
irregular broken lines, of which each element is
approximately straight. Collisions of molecules with
the walls of the containing vessel introduce in the
trajectories perturbations of the same type as those
which originate from intermolecular collision.

I



2 THE KINETIC THEORY OF GASES

We shall learn to measure molecular diameters,
to calculate the number of molecules contained in a
given volume of the gas, as well as their velocities of
translation. We shall see also that, at ordinary tem-
peratures and pressures, molecules behave as particles
of very small dimensions relative to their mutual
distances, projected with velocities comparable to
those of rifle-bullets, and accumulated in every
element of volume of the gas in enormous numbers.
The shape and structural details of the molecules
naturally depend on the chemical nature of the gas
considered. In a complex gaseous mixture the mole-
cules will be of several kinds. Finally, the transla-
tory motion that the molecule experiences as a whole
does not exclude, in the general case, movements of
the molecule about its centre of gravity or even
internal movements of different parts of the same
molecule relative to one another.

2. Distribution of Velocities : Maxwell’s Law.
—Let us consider a pure gas in thermal equili-
brium contained in a solid envelope at a uniform
temperature. We shall assume that molecular
motions and collisions do not affect the molecular
density of the gas, that is to say, the number of
molecules # per cm.?, and, consequently, that this
density remains uniform on the average in the course
of time throughout the gas. In the second place,
we shall assume that, in each element of volume,*
the molecules possess velocities - distributed in all
directions, whose magnitudes are themselves dis-
tributed according to some law independent of the

* The elements of volume with which we are concerned here are
always supposed to be very small compared with the total volume
of the gas, but sufficiently large to hold an immense number of mole-
cules. This dual condition is realisable since, as we shall see, there
are 2:9 X 10'® molecules per cubic millimetre of a gas under normal
conditions,
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position of the selected element; this law will
only be modified by molecular collisions. To sim-
plify the terminology, we shall say that the gas is in
a state of molecular chaos.

The preceding hypotheses are fundamental, and
indispensable for the application of probability con-
siderations. They lead to a knowledge of the law of
distribution of velocities in the state of thermal
equilibrium.

If all the molecules initially possessed the same
velocities, this uniformity would be destroyed im-
mediately by collisions. With the aid of the hy-
pothesis of molecular chaos, Maxwell has shown
that, when the state of thermal equilibrium is
attained, the magnitudes of the molecular velocities
distribute themselves according to a law which is
no longer modified by collisions. His demonstra-
tion, claiming little rigour at first, has been improved
and generalised by himself, and subsequently by
Boltzmann, Jeans, and others. It is valid whatever
may be the complexity of molecular structure and
mutual interaction. Far the present we shall
assume the truth of the result obtained, considering
it as verified by its consequences.*

Let

an = nf(u, v, w)dudvdw . . (1)

be the number of molecules per cm.? whose velocities
have components comprised within the limits, ,
v, wand # + du, v + dv, w + dw. To ascertain the
law of distribution of velocities we must determine
the function f. The velocity ¢ of a molecule is often
represented graphically by a point in space whose
co-ordinates are equal to the components of its

* The elements of a general deduction are given in Chapter V.
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velocity #, v, w; such a point is called a velocity-
point. The product dudvdw, therefore, represents
an element of volume which may conveniently be
abridged to dr. According to this, we shall be able
to say that the number of molecules per cm.® whose
velocity-points lie within the element dr is nf(x, v, w)dr,
or again that the probability that one molecule
should have its velocity-point in the element dr is
f(u, v, w)dr.

With this assumption the law of permanent
distribution obtained by Maxwell for the state of
thermal equilibrium is the following :—

fl, v, w) = ae b’ +v +w*) = gg —be?

a and b are constants the significance of which will
appear later.

Expressing the total number of molecules per
cm.3? by #, we find

. jf(’h v, w)dudvdw = 1,

the sign of integration representing a triple integral
extending from — o to + o for each variable.
Replacing f by its mathematical expression and
making use of well-known mathematical formulee,*
we get the relation
B
2=

It is convenient to replace b by /%m, in which m is the
mass of a molecule and % is a new constant. We
may tHerefore put

* See Note I at the end of the volume. Formula 1.
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h3m3
o= \/,;‘f e (@

h3 .
5, ) = A bt ey

73578
an=mn \/}f:—:z e = hn(u? +o' +0*) dydvdw . (4)

Integrating equation (4) with respect to v and w
from — oo to 4 o0, we obtain the number of mole-
cules per cm.? whose components of velocity parallel
to a given direction* Ox are comprised within the
limits % and # + du. The result obtained,* which
is frequently of service, ist

dn, = n\/}%n e — hmuldy . . (5)

We can interpret formula (4) by saying that the
probabilities that the components of velocity of a
molecule shall lie between # and # - du, v and
v+ dv, w and w 4+ dw, are independent ; the pro-
bability f(u, v, w)dr is the product of three proba-
bilities which depend on %, v, and w respectively.
Formula (4) enables us to obtain quite easily
the number dn, of molecules whose velocities lie
between ¢ and ¢ + dc, without any reference to their
direction. It is sufficient to note that for these
molecules, #2 + v2 4+ w?is a constant equal to c?,
so that their number is obtained by integrating the

* See Note I at the end of the volume. Formula 1.

1 The formula (5) is identical with that which Gauss has given
for the Law of Errors, and which is occasionally referred to as the
Law of Large Numbers. If we measure a quantity, and if » is the
error in one measurement taken among a large number of others,
the number @n of measurements for which the error lies between u
and # + dx is given by formula (5).
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element of volume dudvdw for the whole space be-

tween spheres of radii ¢ and ¢ 4 dc¢, which is there-
fore 4mc?dc. We find in this way

=4n \/ ————e—""w c¥dc . . (6)

The curve opposite (Fig. 1), which represents the
10 i

08

. @\
04 \\\
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02 N

CC«dC

0., 08 12 16 20 2,
F1G. 1.

function 2x2%—22, gives a concrete idea of the law of
distribution of velocities: the number of velocities,
the magnitudes of which lie between two neighbour-
ing absciss® ¢ and ¢ 4 dc, is proportional to the
shaded area.

3. Average Velocities.—If G is any quantity
whatever corresponding to a molecule, the arith-
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metical mean of the values G may take for all the
molecules in a given element of volume is referred
to as the mean value of this quantity in this element
of volume, and is represented by G.

Formula (6) enables us to calculate the mean
square velocity, that is to say the velocity C, the
square of which is equal to the average of the squares
of all the velocities. We obtain actually *

&%

(2 — Hazd -3 . .

2hm
1)

This velocity C plays an important part in every-
thing that follows, and it is important to guard
against confusing it with the real mean velocity,
given by

v’

B §
—c = Nedn,= = . . (8
v ¢ ﬂ'\o V4 whm ©)

or with the most probable velocity ¢,, which makes
the expression (6) a maximum, and consequently
has the value

Gh = ——I: .
o ~
We see that
v '8
T~ Nigm (8a)

and

Co_ \/
C 3

* Note I. Formula 5. The arithmetical mean of the values of
¢2, which is, rigorously speaking, an ordinary sum, has been re-
placed by a definite integral. This method of calculation is justified
by the remark contained in the note on page 3.



