Large Scale
. Matrix Problems
? Eodited by
Ake Bjorck
Robert J. Plemmons
Hans Schneider




Large Scale
Matrix Problems

Edited by
Ake B jorck

Link6ping University
Linkoping, Sweden

Robert J. Plemmons

University of Tennessee
Knoxville, Tennessee

Hans Schneider

University of Wisconsin—Madison
Muadison,.Wisconsin

NORTH HOLLAND
New York ¢ Oxford



Elsevier North Holland, Inc.
52 Vanderbilt Avenue, New York, New York 10017

Distributors outside the United States and Canada:

Elsevier/North-Holland
335 Jan van Galenstraat, P.O. Box 211
Amsterdam, The Netherlands

© 1981 by Elsevier North Holland, Inc.

The material in this book also appeared as Volume™34, 1980 of Linear
Algebra and Its Applications. ©Elsevier North Holland, Inc.

The paper by Alan George and Michael T. Heath (pp.69- 83) is in‘
the public domain.

Library of Congress Cataloging in Publication Data

Main entry under title:
Large scale matrix problems.
Bibliography: p.
Includes index.
1. Matrices. 1. Bjorck, Ake, 1934-
II. Plemmons, RobertJ. III. Schneider, Hans, 1927 (Jan. 24)-
QA188.L37 512.9'434 80-22058
ISBN 0-444-00563-3

Desk Editor Valerie DeBenedette

Design Series

Production Managers John Mickelbank and Joanne Jay
Compositor Science Typographers, Inc.

Printer Capital City Press

‘Manufactured in the United States of America



Contents

I.- LEAST SQUARES AND APPLICATIONS

GeNE H. Gorus (Stanford, CA) AND RoBERT J. PLEMMONS (Knoxville, TN)
Large-Scale Geodetic Least-Squares Adjustment by
Dissection and Orthogonal Decomposition
Eric GRrossk (Stanford, CA)
Tensor Spline Approximation

A. Bjorcx (LINKGPING, SWEDEN) AND 1. S. Durr (Didcot, U.K.)
A Direct Method for the Solution of Sparse Linear

Least Squares Problemis. ", i 0 oDl WA A o et

AvraN GEoRGE (Waterloo, Ont., Canada) aNp MicHAEL T. HeatH (Oak Ridge, TN)

Solution of Sparse Linear Least Squares Problems
Using Givens Rotations

Il. SYSTEMS OF LINEAR EQUATIONS AND APPLICATIONS
M. NEUMANN (Nottiﬂgha.m, UK)
A Combined Direct-Iterative Approach for Solving
Large Scale Singular and Rectangular Consistent

Systems of Linear EqUuations : . . s w sias prwacish badioms il oos it e i

RoserT R. BirMEAD (Queensland, Australia) AND BRiAN D. O. ANDERSON
(Newcastle, Australia)
Asymptotically Fast Solution of Toeplitz and Related

Systems of Linear Equations. . . ... ........ AL S e ;

BENGT AspvaLL (Stanford, CA) anND Yoss1 SmiLoacu (Haifa, Israel)
A Fast Algorithm for Solving Systems of Linear Equations

with Two Variablesper Equation. . . . . . .. ... .co0vi oo

Jonn pE PrLuis (Riverside, CA)

How to Embrace Your Spectrum for Faster Iterative Results. . . . . . . .

ALAN GEORGE AND HaMzA Rasuwan (Waterloo, Ont., Canada)
On Symbolic Factorization of Partitioned Sparse

Symmetric Matrices. . . .. ... ... ..., e e v

.125



Davip M. Younc anp Kanc C. Jea (Austin, TX)
Generalized Conjugate-Gradient Acceleration
of Nonsymmetrizable Iterative Methods. . . . ... ............. 159

lll. EIGENVALUE PROBLEMS

D. E. LongsiNE aND S. F. McCormick (Fort Collins, CO)
Simultaneous Rayleigh-Quotient Minimization
Methods for Axw A By, . . 0. . s v bt e e e 195

C. C. Paice (Montreal, Que., Canada) 7
" Accuracy and Effectiveness of the Lanczos Algorithm
for the Symmetric Eigenproblem. . . . . ... ................ 235

E. SENETA (Sydney, Australia)

Computing the Stationary Distribution for Infinite

Matkov Chains. . . . . . .. dpssrasibd swev @ Snei. L agit 0 sl 259
Y. Saap (Grenoble, France)

Variations on Arnoldi’s Method for Computing
Eigenelements of Large Unsymmetric Matrices. . . .. .. ......... 269

IV. OPTIMIZATION PROBLEMS

Ixuvo Kanexo (Madison, WI) aND Jonc-SHi Panc (Pittsburgh, PA)
Some n by dn Linear Complementarity Problems. . . . ... ........ 297

Tommy ELFvinG (Linkoping, Sweden)
On Some Methods for Entropy Maximization and Matrix Scaling. . . . . . 321

James R. Bunch (La Jolla, CA) aND Linpa KaurmaN (Murray Hill, NJ)
A Computational Method for the Indefinite
Quadratic Programming Problem. . . . ... ......... ... ..., 341

DianNE ProsT O’LEARY (College Park, MD)
A Generalized Conjugate Gradient Algorithm for
Solving a Class of Quadratic Programming Problems. . . . . ... ..... 371

ATHOR INDEE . . o e e o o 401

SUBJECT INDEX. . . : « o s faielaii fupmy wusiiviaghlivhe noblathie sacT wibsarsoions 403



Preface

The purpose of this special issue is to present a collection of papers in
numerical linear algebra which involve the development and analysis of
rigorous mathematical models or algorithms for solving problems involving
large scale matrices. In recent years, large scale matrix problems of ever-
increasing size have arisen. One reason for this is that modern acquisition
technology allows the collection of massive amounts of data. Another factor
is the tendency of engineers and scientists to formulate more and more
complex and comprehensive models in order to obtain fine resolution and
realistic detail in describing physical systems. It is important to note that the
ability of mathematicians and computer scientists to handle increasingly
larger problems is at least as much due to the improvement of existing
algorithms and software and the development of new and more elaborate
methods as to the increase in the computing power of modern machines.
Particular areas in which such large scale matrix problems occur include the
least squares adjustment of geodetic data, the least squares fitting of multi-
variate data by splines, the computation of stationary distribution vectors of
infinite Markov decision chains, the computation of eigenelements of large
symmetric and unsymmetric matrices, the solution of large scale quadratic
programming problems and the solution of maximum entropy problems in
image reconstruction and transportation planning. Each such application
area is represented in one or more papers in this issue.

We have loosely organized the papers into general categories which deal,
respectively, with (1) Least squares and applications, (2) Systems of linear
equations and applications, (3) Eigenvalue problems, and (4) Optimization
problems. Within each category we have chosen to arrange the papers in the
order in which they were recorded as received by the Editors. The general
category in which a specific paper is placed is determined partly by its area
of application and partly by its mathematical character.

The first category contains papers which describe new or improved
algorithms for solving large sparse linear least squares problems. Applications
are given here to the adjustment of massive amounts of geodetic data and to
the fitting of multivariate data by tensor spline approximations.

The second category is concerned with methods for solving systems of
linear equations. The methods involve both iterative and sparse matrix direct
techniques, together with combinations of the two. Particular attention is
paid here to the speed of the algorithms in question.



Category three contains papers on computing eigenelements of large
sparse matrices. The methods described here involve Raleigh quotient mini-
mization, the Lanczos algorithm, and variations of Arnoldi’s method.

The fourth and last category is concerned with selected problems involv-
ing optimization techniques. Linear complementarity problems and entropy
maximization problems and applications are discussed, as well as new
techniques for solving certain classes of quadratic programming problems.

In a more general context, this special issue presents research papers in
numerical linear algebra, but with considerable influence from computer
science. In addition, many of the papers are permeated with the application
of large scale matrix algorithms and software to the solution of current and

" relevant engineering and scientific problems.

AxE BjORrRck
ROBERT J. PLEMMONS
HANs SCHNEIDER



. Large-Scale Geodetic Least-Squares Adjustment
by Dissection and Orthogonal Decomposition

Gene H. Golub*

Computer Science Department
Stanford University

Stanford, California 94305
and

Robert J. Plemmons**

Departments of Computer Science and Mathematics
University of Tennessee

Knoxville, Tennessee 37916

Submitted by A. Bjorck’

ABSTRACT

Very large-scale matrix problems currently arise in the context of accurately
computing the coordinates of points on the surface of the earth. Here geodesists
adjust the approximate values of these coordinates by computing least-squares
solutions to large sparse systems of equations which result from relating the coordi-
nates to certain observations such as distances or angles between points. The purpose
of this paper is to suggest an alternative to the formation and solution of the normal
equatlons for these least-squares adjustment problems. In particular, it is shown how
a block-orthogonal decomposition method can be used in conjunction with a nested
dissection scheme to produce an algorithm for solving such problems which combines
efficient data management with numerical stability. The approach given here paral-
lels somewhat the development of the natural factor formulation, by Argyris et al., for
the use of orthogonal decomposition procedures in the finite-element analysis of
structures. As an indication of the magnitude that these least-squares adjustment
problems can sometimes attain, the forthcoming readjustment of the North American
Datum in 1983 by the Natienal Geodetic Survey is discussed. Here it becomes
necessary to linearize and solve an overdetermined system of approximately 6,000,000
equations in 400,000 unknowns—a truly large scale matrix problem.

*Research supported in part by U.S. Army Grant DAAG29-77-G0179 and by National
Science Foundation Grant MCS78-11985.
**Research supported in part by U.S. Army Grant DAAG29-77-G0166.
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1. INTRODUCTION

Recent technological advances have made possible the collection of vast
amounts of raw data describing certain physical phenomena. As a result, the
sheer volume of the data has necessitated the development of new elaborate
schemes for processing and interpreting it in detail. An example is in the
adjustment of geodetic data. '

Geodesy is the branch of applied mathematics which is concerned with
the determination of the size and shape of the earth, and the directions of
lines and the coordinates of stations or points on the earth’s surface.
Applications of this science include mapping and charting, missile and space
operations, earthquake prediction, and navigation. The current use of elec-
tronic distance-measuring equipment and one-second theodolites for angle
measurements by almost all surveyors necessitates modern adjustment proce-
dures to guard against the possibility of blunders as well as to obtain a better
estimate of the unknown quantities being measured. The number of observa-
tions is always larger than the minimum required to determine the
unknowns. The relationships among the unknown quantities and the ob-
servations lead to an overdetermined system of nonlinear equations. The
measurements are then usually adjusted in the sense of least squares by
computing the least-squares solution to a linearized form of the system that
is not rank-deficient.

In general, a geodetical position network is a mathematical model consist-
ing of several mesh points or geodetic stations, with unknown positions over
a reference surface or in three-dimensional space. These stations are nor-
mally connected by lines, each representing one or more observations
involving the two stations terminating the line. The observations may be
angles or distances, and thus they lead to nonlinear equations involving, for
example, trigonometric identities and distance formulas relating the un-
known coordinates. Each equation typ:cally involves only a small number of
unknowns.

As an illustration of the sheer magnitude that some of these problems can
attain, we mention the readjustment of the North American Datum—a
retwork of reference points on the North American continent whose longi-
tudes, latitudes and, in some cases, altitudes must be known to an accuracy
of a few centimeters. This ten-year project by the U.S. National Geodetic
Survey is expected to be completed by 1983. The readjusted network with
very accurate coordinates is necessary to regional planners, engineers, and
surveyors, who need accurate reference points to make maps and specify
boundary lines; to navigators; to road builders; and to energy-resource
developers and distributors. Very briefly, the problem is to use some 6,000,000
observations relating the positions of approximately 200,000 stations (400,000
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unknowns) in order to readjust the tabulated values for their latitudes and
longitudes. This leads to one of the largest single computational efforts ever
attempted—that of computing a least-squares solution of a very sparse
system of 6,000,000 nonlinear equations in 400,000 unknowns. This problem
is described in detail by Meissl [22], by Avila and Tomlin |4], and from a
layman’s point of view by Kolata [20] in Science.

In general then, geodetical network adjustment problems can lead (after
linearization) to a very large sparse overdetermined system of m linear
equations in n unknowns

Ax=b, (L)

where the matrix A, called the observation matrix, has full column rank. The
least-squares solution to (1.1) is then the unique solution to the problem

min ||b—Ax || ,.
x

An equivalent formulation of the problem is the following: one seeks to
determine vectors y and r such that r+Ay=>b and A’r=0. The least-squares
solution to (1.1) is then the unique solution y to the nonsingular system of

normal equations
A'Ay=A'b. (1.2)

The linear system of equations (1.2) is usually solved by computing the
Cholesky factorization
0 ]

and then solving R‘w=A'b by forward substitution and Ry=w by back
substitution. The upper triangular matrix R is usually called the Cholesky
factor of A'A, but we will use the term Cholesky factor of A.

Most algorithms for solving geodetic least-squares adjustment problems
(see [3], [7], [22], or [4]) typically involve the formation and solution of some
(weighted) form of the normal equations (1.2). But because of the size of
these problems and the high degree of accuracy desired in the coordinates, it
is important that particular attention be paid to sparsity considerations when
forming A’A as well as to the numerical stability of the algorithm being used.
It is generally agreed in modern numerical analysis theory (see [15], [21], or
[25]) that orthogonal decomposition methods applied directly to the matrix A

A'A=R'R, R=
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in (1.1) are preferable to the calculation of the normal equétions whenever

numerical stability is important. Since A has full column rank, the Cholesky
factor R of A can be computed by

QrA=[fg], Q'o=1, R=[%] (1.3)

where the orthogonal matrix Q results from a finite sequence of orthogonal
transformations, such as Householder reflections or Givens rotations, chosen
to reduce A to upper triangular form. It should be mentioned that the use of
Givens rotations is normally preferable to the use of Householder reflections
for orthogonal decompositions involving sparse matrices (see [8]). In addition,
A should normally be preordered by some scheme in order to reduce the
fill-in in R. This could be accomplished, for example, by a symbolic forma-
tion of A'A, followed by an ordering scheme given in [12], or by permuting
the rows and columns of A directly. Further research on this topic is needed.
Since A has the orthogonal decomposition

s-ol8)
then defining
oe=[3]

where ¢ is an n-vector, the least-squares solution y to (1.1) is obtained by
solving Ry=c by back substitution. The greater numerical stability of the
orthogonal-decomposition method results from the fact that tne spectral
condition number of AA in the normal equations (1.2) is the square of the
spectral condition number of A. The orthogonal decomposition method (1.3)
has other advantages, including the ease with which updating and downdat-
ing of the system (1.1) can be accomplished, and the fact that possible fill-in
in forming the normal equations is avoided (see, for example, [5]). However,
~ orthogonal decomposition techniques for solving large sparse least-squares
problems such as those in-geodesy have generally been avoided, in part
because of tradition and in part because of the lack of effective means for
preserving sparsity and for managing the data.

~ Modern techniques for solving large-scale geodetic adjustment problems’
have involved the use of a natural form of nested dissection, called Helmert
blocking by geodesists, to partition and solve the normal equations (1.2).
Such techniques are described in detail in [4], in [18], and in [22], where
error analyses are given.
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. The purpese of this paper is to develop an alternative to the formation
and solution of the normal equations in geodetic adjustments. We show how
the orthogonal decomposition method can be combined with a nested
dissection scheme to produce an algorithm for solving such problems that
combines efficient data management with numerical stability.

In subsequent sections the adjustment problem is formulated, and it is
shown how nested dissection leads to an observation matrix A in (1.1) of the

special partitioned form

(1.4)

where the diagonal blocks are normally rectangular and may be dense or
sparse, and where the large block on the right-hand side is normally sparse
with a very special structure. The form (1.4) is analyzed and a block-
orthogonal decomposition scheme is described. The final section contains
some remarks on the advantages of the approach given in the paper and
relates the concepts mentioned here to further applications. Numerical
experiments and comparisons will be given elsewhere, e.g., in [16].

2. GEODETIC ADJUSTMENTS

In this paper we consider geodetical position networks consisting of mesh
points, called stations, on a two-dimensional reference surface. Associated
with each station there are two coordinates. A line connecting two stations is
roughly used to indicate that the coordinates are coupled by one or more
physical observations. Thus the coordinates are related in some equation that
may involve, for example, distance formulas or trigonometric identities
relating angle observations. An example of such a network appears in Fig. 1.

-More precisely, one considers a coordinate system for the earth and seeks
to locate the stations exactly, relative to that system. Usually coordinates are
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Fic. 1. A 15-station network.

chosen from a rectangular geocentric system (see [7]). Furthermore, a
reference ellipsoid of revolution is chosen in this set of coordinates, and the
projection of each station onto this ellipsoid determines the latitude and
longitude of that station.

As indicated initially in Sec. 1, the relationships among the coordinates of
the stations in the geodetic network lead to an overdetermined system of
nonlinear equations

F(p)=q, (2.1)

where

p=vector of unknown coordinates,

q = vector of observations.

The components of F(p) represent the equations that express the relation-
ships among the unknown parameters and the observations or measurements
made, for example, by surveyors.

A common procedure for solving the overdetermined system (2.1) is the
method of variation of parameters. (This is generally called the Gauss-Newton
nonlinear least-squares algorithm in the mathematical literature.) Approxi-
mate coordinates are known a priori. Let

p®= current vector of approximate coordinates.

Then if F has a Taylor’s series expansion about p°, there follows the
relationship

F(p)=F(p°)+F (p°)(p—p°)+ ",
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where F’(p°) denotes the Jacobian of F at p°. Then taking

A=F(p°),
x=p—p’,
b=q—F(p°)

and truncating the series after 2 terms, one seeks the solution to

min || b—Ax||,. (2.2)

The least-squares solution y then represents the correction to p°. That is, one
takes

p'=p’+y

as the next approximation to p. The process is, of course, iterative, and one
can use p' to compute a further approximation to p. Normally, the initial
coordinates have sufficient accuracy for convergence of the method, but the
number of iterations is often limited by the sheer magnitude of the computa-
tions. Thus a very accurate approximation to y is desired.

Actually, the equations are usually weighted by use of some positive
diagonal matrix W, where the weights are chosen to reflect the confidence in
the observations: thus (2.2) becomes

min || W/2b— W'/2Ax || ,.
x

For simplicity, we will use (2.2) in the analysis to follow. The procedure we
discuss, however, will not be complicated by the weights.

Due to the sheer volume of the data to be processed in many adjustment
problems, it is imperative to organize the data in such a way that the
problem can be broken down into meaningful mathematical subproblems
which are connected in a well-defined way. The total problem is then
attacked by “solving” the subproblems in a topological sequence. This
“substructuring” or “dissection” process has been used by geodesists for
almost a century. The method they have employed dates back to Helmert
(1880) [19] and is known as Helmert blocking (see [27] for a historical
discussion).

In Helmert blocking, geographical boundaries for the region in question
are chosen to partition’ it into regional blocks. This technique orders the
stations appropriately in order to establish barriers which divide the network
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T//A

Fic. 2. One level of Helmert blocking

into blocks. The barriers are chosen so that the interior stations in one block
are not coupled by observations to interior stations in any other block. These
interior blocks are separated by sets of junction stations which are coupled
by observations to stations in more than one block. An example of such a
partitioning of the geodetic network in Fig. 1 to one level of Helmert
blocking is provided in Fig. 2. Here the circled nodes represent the junction
stations chosen for this example.

The particular form of Helmert blockms we will use here is the same as
that used by Avila and Tomlin [4] for partitidning the normal equations. That
procedure, in certain respects, is a variation of the nested dissection method
developed by George [9, 10], George and Liu [12], and George, Poole, and
Voigt [13]. The primary emphasis of the nested dissection strategy has been
on solving symmetric positive-definite systems of linear equations associated
with finite-element schemes for partial differential equations. There, the
finite-element nodes are ordered in such a way that the element matrix B is
permuted into the block partitioned form

rB1 Q. o szoniill) 1
L e L.

Pl e b agd
g 4
L ol G

where the diagonal blocks are square.

In our case we use the following dissection strategy in order to permute
- the observation matrix A into the parbtloned form (1.4). Our procedure will
be called nested bisection.
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Given a geodetical position network on a geographical region R, first
pick a latitude so that approximately one-half of all the stations lie south of
this latitude. This forms two blocks of interior stations and one block of
separator or junction stations, and contributes one level of nested bisection
. (see Fig. 3). Now order the stations in R so that those in the interior regions
@, appear first, those in the interior region @, appear second, and those in
the junction region % appear last; order the observations (i.e., order the
equations), so that those involving stations in @, come first, followed by
those involving stations in @,; then the observation matrix A can be
assembled into the block-partitioned form

Thus A can be expressed in the block-partitioned form

A_:{Al 0 Bl]’

&,

‘where the A; contain nonzero components of equations corresponding to
cordinates of the interior stations in &, and where the B, contain the nonzero
components of equations corresponding to the coordinates of the stations in
the junction region %.

The referee has pointed out that a finer matrix partition is possible. In
region @, there are equations involving only stations in @, and none in

&, ' ; interior stations
_____ B junction stations
@, interior stations

J .

Fic. 3. One level of nested bisection.
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region B, and some involving stations in both @, and 9. Similarly for @, and
®. Figure 3 can then be refined to Fig, 4.
In this case, the matrix A can be further assembled into the block form

@,
@) B
@2
@5 || B _J

and the matrix A can thus be partitioned into the finer block form

Aol 8
Lo A 6B
y-A B
5 B

In the actual implementation of the algorithm to follow, this finer
structure should probably be exploited. However, for simplicity we will
ignore this finer partitioning in the discussion.

Next, in each of these halves we pick a longitude so that approximately
one-half of the stations in that region lie to the east of that longitude. This
constitutes level 2 of nested bisection. The process can then be continued by

/

interior stations

€,
@ interior stations linked by equations to ®
B junction stations
s
&

F1c. 4. One level of nested bisection in refined form.



