Research Monographs in

Parallel and Distributed Computing].6

GREGORY M. PAPADOPOULOS

Implementation of a
General-Purpose
Dataflow
Multiprocessor

RESEARCH MONOGRAPHS IN PARALLEL AND DISTRIBUTED COMPUTING

Gregory M. Papadopoulos
MIT Laboratory for Computer Science

Implementation of a
General-Purpose
Datatlow
Multiprocessor

The MIT Press, Cambridge, Massachusetts

PITMAN PUBLISHING
128 Long Acre, London WC2E 9AN

© Gregory M. Papadopoulos 1991
First published 1991

Available in the Western Hemisphere and Israel from
The MIT Press
Cambridge, Massachusetts (and London, England)

ISSN 0953-7767

British Library Cataloguing in Publication Data
Papadopoulos, Gregory M.
Implementation of a general-purpose dataflow
multiprocessor.—(Research monographs in parallel and
distributed computing : ISSN 0953-7767
1. Computer systems. Multiprocessors
I. Title 1I. Series
004.35

ISBN 0-273-08835-1

Library of Congress Cataloging-in-Publication Data
Papadopoulos, Gregory Michael.

Implementation of a general purpose dataflow multiprocessor /
Gregory Michael Papadopoulos.— Ist MIT Press ed.

p. cm.—(Research monographs in parallel and distributed
computing)

ISBN 0-262-66069-5 (pbk.)

1. Multiprocessors. 2. Computer architecture. 3. Parallel
processing (Electronic computers) 1. Title. II. Series.
QA76.5.P29 1990
004'.35—dc20

All rights reserved; no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without the prior written permission of the publishers or

a licence permitting restricted copying in the United Kingdom

issued by the Copyright Licencing Agency Ltd, 33-34 Alfred Place,
London WCIE 7DP. This book may not be lent, resold, hired out or
otherwise disposed of by way of trade in any form of binding or cover
other than that in which it is published, without the prior consent of
the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddles Ltd, Guildford

Contents

1 General Purpose Multiprocessing 1
1.1 Why Fine Grain Synchronization 2
1.1.1 Tasks Should be Ch@ap . « v o « ¢+ « ¢ 0 « ¢ o & v 5 o m 5 ¢ 56 s a 3
1.1.2 A Virtual Memory Analogy 4
1.1.3 An Informal Task Model of Parallel Computation 6
1.1.4 Parallelism and Synchronization A e e 8w e b 8
1.1.5 The Costs of Task State Transitions 9
1.1.6 Dataflow Machines Directly Execute a “Reduced” Task Graph . . . 11

12 Roadmap me @ s me s ssm s se(s 8@ s ameE s W@ ns s s s es 12
2 The Tagged-Token Dataflow Architecture 14
21 ATPEDAPHIEE sipgsaEdsos sz s s 59 Mgi@ 5 @@ o 3 s s 14
201 ASmpléeExample :issssssn v anisen s gowe nmws e 15
2.1.2 Tags Distinguish Tokens from Different Activations 18

22 TagBNEEHey s+ core i v apmt 8 55658 505 6 585 v o®s s wo,ii 19
20271 Recyeling TABE &« o oo v s 6 i s s sid o mizms vamssapmss 19
2.2.2 Iteration Optimization v v v v i, 20
2:2.3 Context Registers : : s w s o s wm o s s s o s s wms o6 i3 21

2.3 The TTDA Abstract Pipeline 21
2.3.1 Storage and Names in the TTDA 22

2.3.2 The Waiting-Matching Problem 23

3 The Explicit Token Store 25
3.1 Storage, Tokens and Instructions 29
3% CodeBlocks . -« ¢ 5.5 6 « o nw v s mGw s mams s smamme s wasa s 31
3.3 Transformation of Tokens 33
3.4 Activity Generation 34
341 DyadicOperators « « c ww « =5 0 s ¢ wo s 6lpwn s vwn s xw s s 34
3.4.2 Monadic Operatorso i 35
3.4.3 Dyadic Operators with a Constant Operand 35

3.5 Token Generation v v it i i v i it v et et 36
35,1 The Asithmetic Rule ; v v s s wwn s v mww e smsssmss sms s 37
352 TheSend Rule w. cuwes saiams ameosmds oo oonns 38
3:0:3 TheBatract Rulé « s s sww o vwms s sgssmapsvon s ws s 38
3.54 CombiningRules . . i, v v v vmmnenmn s ammeswns 39

36 TheHeap : s wsssrssesvsans i wemse nsp R L T Rl T L 39
3.7 Parallelismin ETS e 41
8 SHINDEY saoppasimEccHE Sl AEEENaES HES s Bflg s s HE B 42

4 Compiling for an ETS Dataflow Processor 43

6.5

4.1 Basic Instruction Set Equivalences. 44
4.1.1 Machine Data Types« . v v v v v i i i vt i e e 44
4.1.2 TTDAInstructions =« s s s v s s s 56 s 5 u s 5 0 a@ o1 5 amssw 45
4.1.3 Rewriting Three-Input Instructions 46
4.1.4 ‘Operand Matching Rules . o « s ¢ o o ¢ ¢ ca v o v s s 6 v ow s s 46
4.1.5 Rewriting Instructions with Three or More Destinations 48
4.1.6 Instruction Opcode Classes 49

42 Li00PE 5 5 s ©F 5 E T S T W E G e G BE G A BE KRR S WS 55

4.3 I-structures: Descriptors and Multiple Readers 58
431 Descriptors . . . o v v v v i s mm s s wEa s W s m s e 59
4.3.2 Multiple Deferred Reads 61

A4 CIOSUTEE « 2 v« o v n o v o o v o s mim s o mm oo s s oo m s wome s e 63

4.5 Resource Managers » . « s s ¢ s s s s s sias s 5535 o c@x s sssons 64

4.6 Operators with More than Two Inputs 66

4T Slot Allocation Revigited s w s + wsm s wam s somw o moniogse s 67

48 SUMMATY . . ¢ s oo ¢ s 686 5 556 § 8 896 8 056 5 bhuwd s ms s G w 70

5 Compiling Imperative Languages for an ETS 71

Sl Thteads : s o : S5 : s 8 5¢ : FEE G 5 amu § wHs s WERE I HBE 5 HE 71

5.2 Translating Quads into Thread Sequences 74

5.3 Multiple Threads Within an Activation 7

5.4 SUMIMATY .« v v v v v e et e 7

6 Monsoon: An ETS Multiprocessor 79

6.1 Mapping Computation onto Multiple Processing Elements 79
6.1.1 Mapping Activation Frames 81
6.1.2 Mapping Data Structures 82
6:1.3 MappingCode: : ¢ s v s smuws s snsenmms s amt s a5 %0 83
6.1.4 Mapping Unprocessed Tokens 84

6.2 Processing Element Microarchitecture 85
6:2:1 Tokens : s s ss 5 wmie 5 8 98 55 @55 WE . E e h e e 86
6.2.2 Requests oL e e e e e e e e 91
6:2.3 INStructions . ¢ « ww v v s mm o s mwm s v BaEE E E @ E &P WE G E 91
6.2.4 Temporary Registers 92
6.2.5 Exceptions. e 94
6.2.6 Detailed Pipeline Operation 96

6.3 I-Structure Memory Elements 98

64 TheNetwork: : v s s s o v ssiome o5 nme o od s 8508 5 0 mb oo mm 98
6.4.1 Bandwidth Requirements. 99
6.4.2 The Write-Acknowledgment Problem 99

Evaluation e e e e e e 101

7 The Monsoon Macroarchitecture 105

0 T 1 = 105
T2 DabA o v v v 0w v v womd 68 b 5 5 5 90 & 8 5 B8 8 WEE 5 B EE F G s § s 106
7.2.1 TheData Field it 108

722 TheTypeField oo v v v i vt on s vsonsas 109

7.3 Programming Examples 110
7.3.1 A Simple Expression oL 110
7.3.2 Forking and Joining Threads 111

7.3.3 Combining Instructions L. 112

7.3.4 Split Phase @ i i it e 114
7.3:5 ProcedureCall . . . v oo s o s s aw s ssmwss awess mm s s 115
7.3.6 Conditional Branch 119
T3l Exceptions : v o o ¢ s oo s s min @ 8 mam § 5 @@ &8 G s 38 88§ 5 119

7.4 Instruction Set Summary Lo 120
8 Conclusion 121
A Monsoon Instruction Decoding 124
Al First Level Decode o v i i i it it e e e e e 126
ALl TYPeMED « v« s s mimc s sommes niigss smis s smiwss mm s s 126
A2 Presence Map o c s s wmw s 8 am ¢ 8 5w s 6 mE 58 84 5 5 86 & & 127
A.1.3 Frame Store Operation 127

A.2 Second Level Decode ¢ v i i v i i vt e e e e e e e e e e e e 128
A.2.1 Function Unit Control 129
A.2.2 Floating point, arithmetic and logic unit 130
A.2.3 Pointerincrement unit00 130
A2.4 Type Propagation Unit 131
A.2.5 Machine controlunit, 132
A.2.6 Next Address Control, 134
A.2.7 Form Token and Token Queues 135
A.2.8 Form Token Control 135

A.3 Exceptions and Condition Codes 139
Ad Stotisticss o« s sm ¢ 5 s ¢ 5 5@ 5 6 ® @i @5 S8 235 BE ¢ HRE 2§ G F 141
A5 Changes from the Monsoon Prototype 141
B Monsoon Macroinstruction Set 143
B.1 Instruction Set Summary e 143
B.1.1 Arithmetic. o e 143
B.1.2 Branch. e e e e e 147
B3 Supervisor Gall o : 2 o5 v ¢ 5 58 6 8 s s 8 555 5 mmoes noo s 149
Bl4 Sphit-Phase . .o v oome v s mwn s s wmesmes smus omsss 150

B.2 Detailed Macroinstruction Encoding 151
B.2.1 Macroinstruction Fields 151

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

The Parallelism-Overhead Tradeoff (from Sarkar) 4
Speedup vs. Task Size When Task Overhead is Very Low 5
Simultaneous Tasks Referencing a Shared Object 7
A Typical Task State Transition Diagram 10
Task State Transition of A Dataflow Instruction 12
A Dataflow Graph for Computing Vector Inner Product (From [14]) 16
Dataflow Graph for “s + A[j] * B[j1” 16
A Firing Sequence for “s + A[j] * B[j1” (From [14]) 17
The TTDA Token Processing Pipeline 22
Explicit Matching Operation« o i v v i v v v v 26
Compilation of a Simple Expression foran ETS 27
An Example ETS Pipeline« v o v v v i i vt it vv v a v o 28
ETS Instruction Components 30
Schematic Relationship Between Storage, Tokens and Instructions 31
An ETS Code Block il 32
Relationship Between Activity Generation and Token Generation Phases . 33
The Matching Function for a Dyadic Operator 35
The sticky Matching Function for a Dyadic Operator with a Constant Input 37
The Arithmetic, Extract and Send Token Forming Rules 37
A Single Instruction Code Block That Performs Reads and Writes on Any

Location, s s « s 55 s s 54 ¢ s s e 40
A Two Phase Read of a Location 41
TTDA Instruction Components 46
Rewriting Three-Input TTDA Instructions into Two-Input Instructions . . 47
The Four Basic Input Operand Forms 48
A Fanout Tree for an Instruction with Five Destinations 49
Executing a Loop of n Iterations as a Tail Recursion 56
Executing a k-Bounded Looponan ETS 56
Block Diagram of an ETS Loop Schema 57
A Set of Contexts Forming a k = 3 Bounded Loop 58
Example of an ETS I-Structure Descriptor Convention 59
Rewriting form-address to Account for a Non-Zero Lower Bound 60
Translation of upper-bound and lower-bound 61
Augmenting an i-fetch to Support Multiple Deferred Readers. 62
A Deferred Read List Comprising Two Readers 62

4.14 The istr Matching Function for an I-Structure Slot which Supports Deferred
Readers o v i i i i e e e e e e e e e e 63
4,15 A Closure with Two Arguments Applied, 64
4,16 Example Operation of the cs-gate Instruction 65
4.17 Enqueueing Manager Requests with q-gate 66
4.18 A gate Instruction With Three Triggers 67
4.19 A gate Instruction which can be Short-Circuited 68
4.20 Composition of Two Instructions to Make Short-Circuited gate 68
4.21 A) Code Block and B) Corresponding Double Dependence Graph 69
5.1 Viewing an ETS Token as a Sequential Thread Descriptor 72
6.1 Top Level View of the Monsoon Multiprocessor 80
6.2 Partitioning Storage Across Processing Elements 81
6.3 Data Structure Interleaving as a Functiononn. 83
6.4 FEight Stage Non-Blocking Monsoon Pipeline 87
6.5 Example Use of Temporary Registers for the Expression (x + y)*(x - y) 94
6.6 A Race Between an i-store and a Deallocate 100
6.7 Monsoon Processor Board e 102
7.1 A Computation Descriptor (CD) 107
7.2 A Sample Monsoon Macrocode Fragment 110
7.3 A Monsoon Macrocode Fragment Using a Temporary Register 111
7.4 Example of Thread Forkand Join« 112
7.5 An Example of Optimizing Code by Combining Instructions 113
7.6 Macrocode for the expressionz = (x +y) * (x -y) 113
7.7 Example of Split-Phase Fetch and Store 115
7.8 Non-strict Procedure Call Convention 117
7.9 An Optimized Version of Non-Strict Procedure Call 118
7.10 An Example Using Conditional Branch 119
7.11 An Example Using Boolean Predicates 119
8.1 The Cost—Performance of Uniprocessors and the Multiprocessor Promise . 121
A.1 Instruction Decoding Tables and Maps 125
B.1 Integer Arithmetic Instructions 143
B.2 Integer Bit Manipulation Instructions 144
B.3 Floating Point Arithmetic 144
B.4 Predicate Instructionso e 145
B.5 Conversion Instructions o 146
B.6 Miscellaneous Arithmetic Instruction 147
B.7 Integer Conditional Jump Instructions 148
B.8 Floating Point Conditional Jump Instructions 149
B.9 Conditional Switch Instructions 149
B.10 Unconditional Switch Instructions 149

B.12 I-Structure Global Memory Instructions 150

B.13 Imperative Global Memory Instructions 151
B.14 Instruction Memory Global Memory Instructions 151
B.15 Generic Global Memory Instructions 151

To my parents,
Imogen and Michael Papadopoulos

1 General Purpose Multiprocessing

Across the diverse range of multiprocessor architectures, from small collections of super-
computers to thousands of synchronous single-bit processors, all seem to share one unde-
sirable property: they are hard to use. Programming has taken a giant step backwards.
The application writer must consider detailed and hard-to-measure interactions of the pro-
gram with the machine; the resulting codes are difficult to debug [37], are of questionable
reliability [46], and are far from portable [31]. Even after arduous work in converting an
application for parallel execution, the actual improvement in performance is frequently
disappointing. Perhaps we do not yet understand how to express parallelism in a way that
is machine independent. Perhaps we need more sophisticated compilers and associated
debuggers to better exploit a machine’s parallelism. Perhaps we are building the wrong
machines.

It is a pervasive belief that our lack of real success in general purpose multiprocess-
ing is a software problem. Machine architects adapt sequential processors to the parallel
setting by providing an interprocessor communication medium and an ad hoc set of syn-
chronization mechanisms, like locks or fetch-and-add. Then the compiler, or worse yet the
programmer, is expected to partition the application into tasks that can run in parallel
using the supplied synchronization primitives to ensure deterministic behavior. While we
certainly share the belief that there is a software problem, we are convinced that there
are equally serious defects in the underlying machines. There needs to be a fundamental
change in processor architecture before we can expect significant progress to be made in the
use of multiprocessors. The nature of this change is the deep integration of synchronization
into the processor instruction set [12]. The instruction set must constitute a parallel ma-
chine language, in which parallel activities are coordinated as efficiently as instructions
are scheduled.

The instruction set of a dataflow machine [6] forms such a parallel machine language.
An instruction is executed only when all of its required operands are available. Thus, low-
level synchronization is performed for every instruction and at the same rate as instructions
are issued. It is easy for a compiler to use this fine grain synchronization to produce code
which is highly parallel but deterministic for any runtime mapping of instructions onto
processors. While there is consensus that dataflow does expose the maximum amount of
parallelism, there is considerable debate surrounding efficiency of the execution mechanism.
This criticism centers on three points: (1) the number of instructions executed, (2) the
relative power of a dataflow instruction and (3) the cost and complexity of a data driven
processor.

Recently there has been significant progress in compiling scientific codes for dataflow
machines [7]. Substantial programs written in the high-level language Id [41][40] and com-
piled for a dataflow machine yield dynamic instruction mixes (e.g. percentage of floating
point operations) that are nearly equivalent to the same algorithms compiled from FOR-

TRAN and executing on a reduced-instruction set sequential uniprocessor [20] [8]. Moreover,
the dataflow program executes essentially the same number of instructions independent of
the number of processors, whereas the parallelization of a program for a conventional mul-
tiprocessor invariably incurs non-trivial execution overhead (e.g. synchronizing through
barriers, task creation [8]) and typically yields far less parallel activity.

But how are we to compare the cost, in terms of processor complexity, of executing
a dataflow instruction versus executing an instruction from a sequential stream? First,
the operation performed by a dataflow instruction is similar in power to an operation
on a conventional load/store machine, i.e. ADD, MULT, LOAD, STORE, BRANCH etc.! The
difference lies in the way instructions are scheduled. In the von Neumann model, the
operands for an instruction are assumed to be available when the program counter points
to the instruction. In a dataflow machine an instruction is asynchronously scheduled only
when its operands have been produced by some other parallel activities, so a dataflow
machine must have an operand matching mechanism for detecting when an instruction
has its required operands. Several general purpose dataflow machines have been built (e.g.
ETL Sigma-1 [26], Manchester Machine [22]) or extensively simulated (e.g. M..LT. TTDA
[14]). But it is clear that these machines are far from commercial practicality®. A primary
reason for this, and a key criticism of dataflow machines, is the complexity of the operand
matching mechanism [21].

Our goal is to discover implementation techniques that improve the cost/performance
ratio of dataflow processors. Central to the work presented here is a new approach to
operand matching. An Explicit Token Store (ETS) machine directly executes dataflow
graphs while incorporating a new model of storage. The ETS allows the operand matching
storage for the execution of a function invocation to be coalesced into an activation frame
which is explicitly managed by the compiler. This enables implementation of the operand
matching store with conventional (as opposed to content-addressable) memory technology
and permits the realization of well-balanced pipelines.

Although this work focuses on the derivation of the ETS within the realm of dataflow
architectures, we take the opportunity by way of this introduction to build a stronger case
for machines which support fine grain synchronization. We believe that parallel machine
architects eventually will have to apply the same concern for the efficient coordination
of parallel activities as they presently do for fast sequential execution within a processor.
Only then can we expect significant progress in exploiting parallelism in the general purpose
setting.

1.1 Why Fine Grain Synchronization

Most multiprocessors are very bad at managing parallelism. Programmers and compiler
writers are painfully aware of this fact. The more finely a program is divided into tasks, the
greater the opportunity for parallel execution. However, there is a commensurate increase
in the frequency of inter-task communication and associated synchronization. So exposing

'Here we are restricting our attention to the instruction set of the M.LT. Tagged-Token Dataflow
Architecture (TTDA).

*The ETL Sigma-1 is the best engineered of the group. Presently, a 128 processor 640 MIPS engineering
prototype is now operational at the MITI Electro-Technical Laboratory in Japan.

2

more parallelism, by way of identifying more tasks, does not obviously make the program
run faster. In fact, we claim that is largely unprofitable to expose most of the latent
parallelism in programs unless synchronization and task management are as efficient as
the scheduling of primitive operations like add and multiply.

For a given machine, there is a fundamental tradeoff between the amount of parallelism
that is profitable to expose and the overhead of synchronization. Sarkar[48] articulates
this tradeoff as the competing contributions of the ideal parallel execution time, the
amount of time required to execute the program in the absence of overhead, versus the
overhead factor, the extra work required to schedule and coordinate the tasks. The ideal
parallel execution time is multiplied by the overhead factor to yield the actual parallel
execution time, the amount of time required to complete the problem for a given task
granularity in the presence of scheduling overhead.

Figure 1.1 illustrates the general characteristic of the parallelism-overhead tradeoff for a
typical program running on a machine with ten processors. This plot is suggestive of what
was experienced running various programs on contemporary multiprocessors, but it does
not express the data from a specific machine or application. The normalized execution
time is the ratio n/s where n is the number of processors and s is the actual speedup
relative to a single processor. The normalized ideal parallel execution time increases from
1 to n as the task granularity increases from 1, a single instruction, to 100,000 when the
entire program executes as a single task. The task overhead factor is given by (g + 0)/g
where g is the task size in instructions and o is the per-task overhead, in this case 1000
instructions®.

In this example the actual execution time is a minimum for a task size of about 2,000
instructions yielding a normalized execution time of three — that is, three times slower than
the best ideal time. And this plot is optimistic. It is not possible, in general, to partition a
given program into tasks of equal size, and the task overhead is a complicated expression
that depends upon how the program was partitioned into tasks (e.g. the communication
overhead component is a function of the number and sizes of data structures shared by
two tasks). Thus, achieving optimal performance in the presence of overhead is much more
difficult than simply finding the intersection of the ideal execution and overhead factor
curves in Figure 1.1.

1.1.1 Tasks Should be Cheap

Look again at Figure 1.1. We think there is something fundamentally wrong — why should
the task overhead be so extraordinarily large? Is it an inherent aspect of parallel compu-
tation or an artifact of the processor architecture used to construct the multiprocessor?
We believe the latter. It seems counterproductive to force a programmer or compiler to
expend so much effort working around what amounts to a basic deficiency in the proces-
sor architecture. If the task overhead were essentially zero, more parallelism would be
exposed and exploited and compiling would be far easier. In fact, the entire partitioning
and scheduling problem solved by Sarkar for the functional language SISAL [38] would be
moot on a machine that had very low task overhead.

3The example employs a per-task overhead of 1,000 instructions which is very low as compared to the
tasking costs on current commercial multiprocessors and operating systems.

~
=]
S

Ll

1

Actual Parallel Ezecution Time

Normalized Execution Time

10 =
7] 7
] Dverhead \-\ //$ Ideal Parallel Ezecution Time
_ T2\ P
b
= o
<.
’/// S
e —— SSiea,
1 LLILLLL BRI R AR R AL
1 10 100 1000 10000 100000

Task Size (Instructions)

10 Processors, 100000 Instructions, Overhead = 1000 Instructions/Task

Figure 1.1: The Parallelism-Overhead Tradeoff (from Sarkar)

By “low overhead” we mean on the order of one to ten instructions, basically orders
of magnitude better than contemporary multiprocessors. We think the parallelism—
overhead tradeoff should look like Figure 1.2. In this ideal world, task overhead is not a
first order issue. Instead, the objective is to expose the maximum amount of parallelism
by subdividing the computation as finely as possible.

1.1.2 A Virtual Memory Analogy

In a way, our argument for hardware support of fine grain synchronization is not unlike
the case for architectural changes in order to efficiently implement demand-paged virtual
memory. Demand-paging is a convenience for the programmer. It is very tedious for a
programmer to manage overlays of code or data, and overlays clash with the semantics
of modern programming languages. When data structures get large and access patterns
are unpredictable, the programmer using overlays essentially emulates a virtual memory
system, with the attendant loss of efficiency — both of the machine and the programmer.

While it is possible to look for the compiler-forte that can sift through the access
patterns of programs and insert page management code, the problem is so intractable
that we have come to insist on hardware support. The essential changes to the hardware
are simple to describe, but the effect on the machine architecture is pervasive. Address
translation and page fault detection must correctly occur on every memory reference,
and each instruction that touches memory must be restartable. These two requirements

~
=)
S

|

L. ULl

Actual Parallel Ezecution Time

= Ideal Parallel Ezecution Time

N

Ll

Normalized Execution Time
~
S

LELRRRUL I”I"ll

1 10 100 1000 10000 100000

Task Size (Instructions)

Figure 1.2: Speedup vs. Task Size When Task Overhead is Very Low

affect almost every aspect of the implementation from cache design to the basic instruction
interpretation mechanisms.

Why should the management of complex interactions among concurrently executing
entities be any easier? At least the demand paging analysis need only focus upon the
address patterns of a single locus of control, whereas intertask synchronization analysis
must discover the interaction of addressing patterns across multiple control loci. We think
that a parallel machine should provide, at a minimum, real time synchronization checks
on every memory load and store.

We also maintain that compiling for a parallel machine is greatly simplified when the
task namespace is “virtualized”; that is, the namespace is much larger than the number
of physical processors, so tasks are not bound to limited processor resources like multiple
register sets.

An analogy for a machine that supports only a small fixed number of contexts (cf the
Denelcor HEP [50]) would be a virtual memory system where the hardware supports a
small number (say, 64) of simultaneous page translations, but where issuing an address
that is not presently in the translation buffer causes an unrecoverable error (as opposed
to a restartable fault). This puts the burden on the compiler to manage the translation
buffer, explicitly inserting and deleting entries. It is not clear that this is any easier than
performing demand paging on a machine with no hardware support. Similarly, a machine
that provides a virtualized task namespace relieves the compiler and runtime system of
the tough job of managing a small set of active tasks drawn from the large set of possibly
active tasks.

In the remainder of this chapter we look more carefully at the overhead incurred in the
parallel execution of a program. We build an informal model of parallel computation based
upon concurrently executing tasks that can communicate through shared memory. While a

conventional processor executes the sequential portion of these tasks very well, it provides
little support for moderating the interaction among tasks. Our objective is to sensitize
the reader to two of our axioms: (1) a machine should support lots of simultaneous tasks
and (2) synchronizing and scheduling these tasks should be very cheap. Not surprisingly,
we believe that dataflow machines possess these properties. This work presents a dataflow
processor architecture which, we believe, is a simple and appropriate building block for
general purpose multiprocessors.

1.1.3 An Informal Task Model of Parallel Computation

We present a model of parallel execution to build our intuition about the cause of high
overhead in parallel computation. We do this to motivate architectural support for fine
grain synchronization, not to put forward an exact, or even complete, performance model
for multiprocessors.

We are strongly biased towards programming parallel machines in high level languages
which support a dynamic model of storage (z.e. a heap). At present, we do not see how
modern languages can be effectively compiled for machines that do not directly supply
a uniform address space without forsaking the ability to freely reference shared objects
from within the language. In message passing machines (e.g. the Cosmic Cube [49]
and Intel iPSC) the only way to share data is for the programmer to explicitly code
commands to move data from one processor to another, so references to shared objects
are emulated by the programmer and are not part of the machine language*. We focus
instead upon uniform address space machines (e.g. the BBN Butterfly [47] , IBM’s
RP3 [44], Alliant and Cedar [33], Cray-XMP) which provide hardware interpretation of
references to addresses which are non-local, meaning there is no requirement for a compile-
time distinction between local and non-local storage.

Suppose that we represent an executing parallel program as a task graph of inter-
dependent sequential tasks. The nodes of the graph represent activations of sequential
tasks, the local storage for which will be contained by an activation frame. The edges
represent inter-task control and data dependences. We further assume that the execution
dependences form a tree, although tasks can also communicate through shared objects on
a heap for which references are passed as arguments and results. The shape of the task tree
and the connectivity of objects on the heap, in general, cannot be determined statically,
as we also permit fully recursive application and dynamic allocation of shared objects. For
example, consider the following program which initially invokes £, which in turn allocates
and returns as a result the object A, and makes calls to g and h;

def £() = def g(A) = def h(A) =
{ allocate A; { call g1(); { call hi(A)};
call g(A); call g2(A)};
call h(A);

return A };

“The driving concern is efficiency. It is certainly possible to emulate a shared address space on a
message passing machine. The inefficiencies of such a scheme should be obvious, notwithstanding the
efforts of intensive compile-time analysis.

We have not yet taken a position on how £ is to be computed. Namely, what order is
to be imposed on the computation of g and h? There are roughly three possibilities.

1. Sequential. The familiar sequential order: £ calls g and £ suspends; g computes,
terminates and then continues £; £ calls h and suspends; h computes, terminates and
continues f; £ terminates. These rules are applied recursively to g, h, gi, g2 and
hi. So at any time there is a stack of activation frames, of which only the top one is
active.

2. Fringe Parallel. The calls to g and h are made in parallel: £ forks g and h as
independent tasks, and f suspends; g and h compute; when both g and h have
terminated f is continued (i.e. g and h are joined with £); £ terminates. These rules
are applied recursively to g, h, g1, g2 and hi, but notice that only the leaves of the
calling tree are active simultaneously.

3. Fully Parallel. A parallel call is made to g and h except that £ is not suspended.
f terminates after g and h terminate. The recursive application of this rule enables
all tasks to run concurrently in the tree of active tasks.

We are not concerned with how the programmer indicates which evaluation method to
use, nor whether the programming language semantics are functional or imperative. In
either the parallel call or fully parallel case, the task graph unfolds as shown in Figure 1.3.
We note that if calls proceed in parallel, there is no way a priori to allocate and deallocate
local storage for the simultaneous tasks from a stack. In this case, tasks must be given
separate activation records which, in general, must be managed more nearly like a heap.

Tree of Activation Frames

— hi — — gl —

------------- Heap
Object

Figure 1.3: Simultaneous Tasks Referencing a Shared Object

The decomposition of the program into parallel tasks is usually accomplished explicitly
by the programmer by annotating the source program [31], although functional language
(e.g. FP [15], s1sAL [38], Id [41][40]) programs can be partitioned automatically by the
compiler. There is also considerable effort in the semi-automatic partitioning of programs
written in sequential languages, notably FORTRAN, into parallel tasks [3][2].

1.1.4 Parallelism and Synchronization

The opportunity for parallel execution arises by noticing that all tasks whose dependences
are satisfied can be freely scheduled. A dependence may either be a parameter to a task
(e.g. the pointer to an object), a control prerequisite (e.g. the termination of another task,
the acquisition of a resource lock), or dynamic data dependence through the heap (e.g. an
element of an array).

The determination of the set of executable tasks is fundamentally a problem of syn-
chronization, the act of translating the implicit or explicit assertion of a dependence by
one task into a decision either to schedule or block another dependent task. The forms
of synchronization required to support various dependences found in parallel programs
include the following basic operations:

1. Producer—Consumer. A task produces a data structure that is read by another
task. If the tasks are executed in parallel, synchronization is needed to avoid the
read-before-write race.

2. Forks and Joins. A parallel call forks the thread of control into two tasks which is
subsequently joined back together.

3. Mutual Exclusion. Concurrent procedures may emit requests that must be pro-
cessed one at a time, e.g. updating an object or the serialization in the use of a
resource.

All forms of synchronization require the naming of a synchronization event. At least
one bit of state must be associated with this name, indicating whether the event has
occurred or is pending. When the event occurs, the synchronization can complete. For
producer—consumer synchronization this means that a waited-for value has become valid
and the consumer can read it; for a join this means that both threads have reached the
join and that one may proceed; for mutual exclusion this means that the exclusive resource
has been freed for use by a pending requester. We say that a task is blocked when it is
waiting for a pending event.

The more finely a program is divided into independent tasks, the greater the opportu-
nity for exploiting parallelism; but there is typically a similar increase in the frequency of
synchronization. Each pending synchronization event requires a unique name. Thus, as
the number of potentially concurrent activities increase, so does the number of simultane-
ously named synchronization events. If the total number of concurrent tasks are identified
dynamically (e.g. parallel execution of nested loops, recursive execution, or even separate
compilation) then maximum number of synchronization events is difficult, or impossible,
to predict statically. If the synchronization namespace is small, limited for example by
the number of registers in a processor, then exposing parallelism is apt to be more diffi-
cult as the synchronization namespace must be carefully managed. This requires either
static analysis at compile time (tantamount to global register allocation) or fairly expensive
runtime (e.g. operating system) management.

Aside from how a synchronization point is named, the most important property of
an implementation is how the event is related to the completion of synchronization. In
an event driven system, the event directly causes the blocked task(s) to be scheduled,

8

