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Preface

The subject of combinatorics is only slowly acquiring respectability
and combinatorial games will clearly take longer than the rest of combina-
torics. Perhaps this partly stems from the puritanical view that anything
amusing can’t possibly involve any worthwhile mathematics.

In the past, “game theory” has meant the subject delineated by von
Neumann and Morgenstern, which has found wide, though usually un-
successful, application in economics, management, military strategy, and
other useful forms of human activity. Combinatorial games, with com-
plete information, no chance moves, and no place for bluffing or coalitions,
are of little interest to the classical game theorist, who knows that there
is always at least one pure optimal strategy.

Why, then, should we be interested in combinatorial games?

Aviezri Fraenkel gives some cogent reasons in the introduction to his
Selected Bibliography at the end of this volume.

There are many connexions with other parts of mathematics, only a
few of which have so far begun to be explored, and only one of which is
seriously considered here. Vera Pless explains the several connexions with
coding theory, through which we make contact with most of the branches
of the main stream of combinatorics, including graph theory.

A whole new theory of number, including infinitesimals and transfinite
numbers, has emerged as a special case of the theory of games. This
is introduced by John Conway in the second chapter. Investigation of
this remarkable area is only slowly gaining momentumi, in spite of the
early appearance of Donald Knuth'’s popularization, Surreal Numbers.
Perhaps this only served to perpetuate the myth that we are dealing
with a frivolous subject.

As Aviezri Fraenkel explains, complexity theory is very well illustrated
by combinatorial games, which supply a plethora of examples of harder
problems than most of those which have been considered in the past.

xi



xii Preface

We have been able to do no more than touch on the theory of “hot”
games, which are, of course, the interesting ones from a practical, as well
as a theoretical point of view. Elwyn Berlekamp explains the significant
progress that he has been making with the analysis of endgames in Go, a
game long thought to be even more intractable than Chess.

We introduce “impartial” games in Chapter 3. These “tepid” games
are of minimal interest to the classical game theorist, but there are plenty
of unsolved problems in this area, as well as in the rest of the subject. A
notable one is how to deal with the “miseére play” of impartial games. A
small but important break-through was recently made by William Sibert,
and Thane Plambeck is now unveiling the misére analysis of several games
which had earlier seemed intransigent.

A list of open problems is given towards the end of the book. While
some of these are undoubtedly hard, inroads are being made into others
even as I write, and a new generation of graduate students will find a rich
vein of material waiting to be investigated.

As examples of what has been and what remains to be done, Richard
Nowakowski presents in the last chapter some specific examples of games.
Welter's Game is now understood, but see the quotation of Berlekamp by
Fraenkel in section 6.2 of the “complexity” chapter. In Conway’s game
of Sylver Coinage, on the other hand, much remains to be discovered,
though G.L. Sicherman and others are slowly revealing more and more
of the truth. Finally, Berlekamp’s masterly analysis of the well-known
children’s game of Dots-and-Boxes illustrates the many levels at which a
seemingly simple game may be played, and the many quite sophisticated
techmques which may be used in its analysis.

We are indebted to Academic Press for permission to reproduce some
text and a number of figures from John Conway’s On Numbers and Games
and from Winning Ways for your Mathematical Plays by Berlekamp, Con-
way and Guy.

- Thanks to the Short Course Committee for suggesting and to Jim
‘Maxwell and Monica Foulkes for organizing the course that has supplied
the raison d’étre for the present volume, and to Alison Buckser and other
members of the American Mathematical Society’s staff for its careful and
expert production.

Richard K. Guy,
The University of Calgary,
90-11-05.
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Proceedings of Symposia in Applied Mathematics
Volume 43, 1991

What is a Game?

Richard K. Guy

1 Introduction

- We only skim the surface of the vast subject of combinatoriai games. For
more breadth, depth and detail, consult both of the books: :

Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning
Ways for your Mathematical Plays, Academic Press, London & New York,
1982;

John H. Conway, On Numbers and Games, London Math. Soc. Mono-
graph 6, Academic Press, London & New York, 1956;

which we will frequently refer to as WW and ONAG respectively.

Two other surveys are Fraenkel (1980), who considers the complexity
of games, and Guy (1983), who explores the connexions between games
and graphs. :

Fraenkel contrasts Nim with Go, the former with a very simple win-
ning strategy, the latter very complicated. In later lectures in this course,
Fraenkel will discuss complexity, I will go into some detail about impartial
games, whose prototype is the game of Nim, and Berlekamp will tell you
about his discoveries concerning the game of Go. Nim has no cycles in
its game graph, no interaction between tokens, and is impartial; Go has
cycles and interaction and is partizan. The spectrum between the two
games spans the complexity gap between polynomial, Pspace-complete, -

and Extime-complete games. In existential problems such as the travel-
ling salesman problem, high complexity is a liability, but in games and
cryptanalysis, it can be an asset.

The paper is in final form and no version of it will be submitted for publication elsewhere.
1980 Mathematics Subject Classification (1985 Revision). Primary 90D05.
' ®© 1991 American Mathematical Society

1 0160-7634/91 $1.00 + $.25 per page
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2 RICHARD K. GUY

Fraenkel also maintains a valuable bibliography of the subject, copies
of which may be obtained from him at the Weizmann Institute, Rehovot,
Israel. A recent edition appears at the end of the present volume.

Guy surveys the connexions between combinatorial game theory and
graph theory: graphs of games: games on graphs (Hackenbush, von Neu-
mann’s game, Rims, Rails, Lucasta, Sprouts); the ways graphs can be
used to elucidate puzzles (Tantalizer, Rubik’s Cube, Fifteen Puzzle, magic
squares); and the occurrence of Euler’s formula in Berlekamp’s analysis
of Dots-and-Boxes [WW, 507-550].

2 What We Mean by a Combinatorial Game

[WW, 16-17]

Our-games are unlike those of “classical” game theory, that find ap-
plication in economics, management, and military strategy. Our games
(almost always!) satisfy the following conditions:

1. There are just two players, often called Left and Right. There can
be no question of coalitions.

2. There are several, usually finitely many, positions, and often a
particular starting position.

3. There are clearly .defined rules that specify the two sets of moves
that Left and Right can make from a given position to its options.

4. Left and Right move alternately, in the game as a whole.

. In the normal play convention a player unable to move loses.

(1]

6. The rules are such tnat play will always come to an end because
some player will be unable to move. This is called the ending
condition. There are no games which are drawn by repetition of
moves.

7. Both players know what is going on; there is complete informa-
tion. There is no occasion for bluffing.

8. There are no chance moves: no dealing of cards; no rolling of dice.

Think about games that you know. How far do they satisfy these
eight conditions? '
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Ludo, Snakes-and-Ladders and Backgammon all have complete
information, but contain chance moves, since they all use dice.

Battleships, Kriegspiel, Three-Finger Morra and Scissors-Paper-
Stone have no chance moves but the players do not have ¢complete infor-
mation about the disposition of their opponents’ pieces or fingers. More-
over, in the finger games, the players move simultanéously rather than
alternately.

Tic-Tac-Toe (Noughts-and-Crosses) fails 5. because a player un-
able to move is not necessarily the loser, since ties are possible. Chess
also fails 5. and contains positions that are tied by stalemate (in which
the last player does not win) and positions that are drawn by infinite
play (of which perpetual check is a special case). The words “tied” and
“drawn” are often used interchangeably, though with slight transatlantic
differences, for games which are neither won nor lost. We suggest that
drawn be used for cases when this happens because play is drawn out
indefinitely and tied for cases when play definitely ends but the rules do
not award a win to either player.

Monopoly fails on several counts. As in Ludo, there are chance
moves and there may be more than two players. The players don’t have
complete information about the arrangement of the cards and the game
could, theoretically, go on for ever.

In Poker much of the interest derives from the incompleteness of the
information, the chance moves and the possibility of coalitions.

Bridge is a two-person game, each “person” being a team of two, but
the players do not even have complete information about their own cards.

Nim is played with heaps of beans. When it is your turn to move,
choose a heap and remove as many beans from it as you wish; perhaps
the whole heap, but at least one bean. Grundy’s Game is also played
with heaps of beans. A move now is to split a heap into two heaps of
unequal size, so that heaps of one or two cannot be split. Wythoff’s
Game is played with just two heaps. A move is to remove any number
of beans from one heap, or equal numbers of beans from both heaps.
This last option is an example of a nondisjunctive move: it doesn’t
satisfy the condition for the sum of two games, which we will define
later. Nim, Grundy’s Game, and Wythoff's Game each satisfy all of our
eight conditions, together with the additional one that the options from
any given position are the same for each player, regardless of whose turn
it is to move. Such games are called impartial; those games in which the
options for the two players are not all alike are called partizan.
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Dots-and-Boxes is won by the player scoring the larger number of
boxes, so that it doesn’t satisfy the normal play convention. However, as
Richard Nowakowski explains in the last chapter, it can almost always
be treated as an impartial game, satisfying the normal play convention.
Part of its theory uses that of Kayles and of Dawson’s Kayles. These
two games are played with rows of skittles: in Kayles a move removes
Just one skittle, or two adjacent ones, so that the game repeatedly splits
into a sum of smailer games. Similarly in Dawson’s Kayles, in which the
move is to remove any skittle, provided that its immediate neighbors, if
any, are also removed.

Sylver Coinage is an impartial game which uses the misére play
convention that the last person to play loses. Misére games are usu-
ally very difficult to analyze, though a recent breakthrough was made by
William Sibert and John Conway who have found the complete analysis
of Misére Kayles.

Go is a good example of a “hot” partizan game, i.e. one in which,
in the great majority of positions, each player is eager to make the next
move. As Elwyn Berlekamp explains in a later chapter, he has recently
been making good progress with analyzing the concluding stages/ of the
game, using his generalization of the idea of “overheating” [WW 170-174].

We will often refer to a move as being “good” if it wins, and “bad” if

" it won’t. In theory it usually suffices to find any good move, or to show
than no good move exists. But in real life games there are many other

- criteria for choosing between your various options. If you're losing, then
all your options are bad in the above sense, but in practice they’re not all
equal, and you might prefer one that makes the situation too complicated
for your opponent to analyze (the Enough Rope Principle).

It is hard to draw the line between mathematics and psychology.
There are even cases where you should prefer a bad move to a good
one! Your opponent might be learning how to play a game with which
you're already familiar. In this case you’ll probably be able to win a few
times despite the bad moves you deliberately make so as not to give away
your strategy. Or one move, theoretically the best, might gain you only
a dollar, while another, which loses a dollar, might win you a hundred
if your opponent fails to find the subtle winning reply. Or you may be
a baby-sitter, whose job is much more peaceful if your opponent wins.
Or a card-sharp who’s losing while the stakes are low, in anticipation of
winning later when the stakes are higher.
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3 Game Graphs and Trees

A game may be visualized as a digraph: the nodes are the positions and
the arcs are the options. The arcs may be thought of as colored, say

bLue, " Red, or grEen
according as the option is available
to Left only, to Right only, or to Either player.

Alternatively, we may distinguish between different plays of the game,
i.e. different dipaths in the digraph, by duplicating the nodes as necessary
and representing the game by a rooted tree. The root is the starting
position and the arcs are directed away from the root.

Figure 1: The game graph for the Nim position {3,2}.
From the leftmost position the next player can win
by adopting the strategy indicated by the heavy arrows.

Figures 1 and 2 show the game graph and the game tree for the posi-
tion {3,2} in a game of Nim: two heaps, one with three beans, the other
with two. Nim is an example of an impartial game, in every position

of which the same set of options is available to either player: think of
~ the arcs in Figures 1 and 2 as being colored green. Nim is played with
a number of heaps of beans. The typical option, for either player, is to
choose a heap and remove from it as many beans as you wish: the whole
heap maybe, but at least one bean.

Notice the difference between the complete analysis of a game. and
a winning strategy. Figure 2 is a complete analysis: for a winning
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strategy it suffices to describe the four black arrows.
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Figure 2: The game tree for the same Nim position.
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The root is {3,2}, and the arcs are directed upwards.

You may mentally identify three seemingly different aspects of the
same idea.

1. A game, i.e. the whole digraph or tree representing the game. For
example, the Game of Chess, as opposed to a (particular) game of
chess. We refer to the latter as a play of the game: compare le jeu
d’échecs, une partie d’échecs. :

2. A position in a game; a particular node of the digraph, perhaps
the root of the tree. For example, the standard opening position in
Chess, ready for a play of the game.

3. The ordered pair of sets of options available to the two players
from a given position, e.g.

{Pa3,Pa4,...,Ph3,Ph4,5a3,5¢3,5{3,Sh3|Pa6,Pa5, . ..,Ph6,Ph5,5a6,5¢6,56,Sh6}

A position, such as the rightmost in Figure 1, or any zero in Figure
2, from which neither player has any option, is a terminal position,
at which the game ends. The outcome is then specified by the rules.
It may be a win for Left, or a win for Right, possibly accompanied by
some score or payoff. The rules may not specify a winner, so that the
game may end in a tie. For present purposes we will adopt the normal
play convention that the winner is the player who has just made the last
move: ~quivalently, last player winning; if you can’t move, you loge. We
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won’t have time to say very much about the misére play convention,
~which accords the win to a player unable to move: last player losing.
Analysis is far more difficult in this case. -

To ensure that we have a last player, our games must end. We assume
that they satisfy the ending condition: that there is no infinite sequence
of options. Notice that this condition prohibits all infinite sequences, not
merely those in which Left and Right make alternate moves. In order to
give values to our games, we need to consider the possibility of several
consecutive moves by the same player. This can occur in the play of the
sum of two.or more games, as we shall see.

A game that does not satisfy the ending condition is called a loopy
game. Its digraph will contain a directed circuit or an infinite directed
path. The outcome may be a draw: note that we distinguish betweena
tied game and one drawn out by infinite play. Chess exhibits both kinds
of outcome: stalemate is a tie, but perpetual check, repetition of moves,
“ or msuﬂicnent ma.tmg materlal are equivalent to draws.

4 The Formal Definition of a Game
This is deceptively simple: each game is an ordered pair of sets of games:

G = {{GI, G&, ... }|{G™, G2, ... }}.

[~

To avoid proliferation of braces, we write this more compactly as
G = {G*|G®}

where we must remember that G and GE are sets of Left and Right op-
tions, which may, for example, be infinite, or empty. Indeed the definition
is inductive, and the empty set is the basis for the induction, which starts
with the Endgame '

{ele}={ | }

in which neither player has an option, and which we will denote by 0
(zero). ~

Here, and from now on, we use several symbols, which are familiar in
elementary arithmetic, with the strong implication that we can manip-
ulate games in the same way that we manipulate numbers in ordinary
arithmetic. Some games behave like numbers and we call them numbers,

- but to justify the manipulations takes more space than we have here,
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so turn to pages 71 96 of ONAG if you would like more detail and fur-
ther examples. See also the next chapter, Numbers and Games, by John
Conway.

It’s helpful to attach ordinal numbers, or birthdays, to games, and
to introduce the idea of simplicity [WW, 23-27]. When a move is made
in a game, it becomes simpler in the sense that we arrive at a position
with an earlier birthday. All definitions and proofs are inductive in that
they are assumed to have been made for all simpler games. The basis, as
" we have already stated, is the simplest game of all, the Endgame, born
on day zero. '

On day one we have two sets, the empty set and the set {0} consisting
of the Endgame: so that we can visualize 22 games. Their game trees (in
which Left's moves slope up to the left and Right’s moves slope up to the
right), together with their names. are shown in Fig. 3.

0={ ]} 1= {0] ) ~1=1 |0} « = {00}

Figure 3: The four simplest games. born on days zero and one.

We quote from p. 72 of ONAG:

The simplest game of all is the Endgame, 0. 1 courteously offer
you the first move in this game, and call upon you to make it. You
lose, of course. because 0 is defined as the game in which it is never:
legal to make a move.

In the game 1 = {0]} . there is a legal move for Left. which ends
the game, but at no time is there any legal move for Right. If I play
Left, and you Right, and you have first move again (only fair, as you
lost the previous game) you will lose again, being unable to move
even from the initial position. To demonstrate my skill, I shall now
start from the same position. make my legal move to 0, and call
upon you to make yours.

Of course you are now beginning to suspect that Left always wins,
so for our next game, —1. you may play as Left and 1 as Right! For
the last of our examples, the new game = = {0|0}, you may play
whichever role you wish, provided that for this privilege you allow
me to play first. )
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~

In summary:

The Endgame is the prototype of games in which the next player loses,
since no option is available: a second player win.

The game 1 is a Left win, no matter who starts: if Louise starts, she
goes to { | } = 0 and Richard has no option and loses: if Richard starts.
he has no option and loses even more quickly.

~ The game —1 is a Right win, no matter who starts.

The game {0/0} = * (“Star”) is the simplest game/ which is not a

number [WW, 40]. It is a first player win.

/
/

5 The Four Outcome Classes

7
If we adopt the normal play convention, every game belongs to just one of
four outcome classes [ONAG, Theorem 50] which are exemplified by the
four games we've just seen. The termmology and notation are displayed
in Figure 4.

l

If, in a game G Right starts
& L has a & R has a
winning winning
strategy strategy
ZERO NEGATIVE
& R has a
winning G=0 ; G<O
strategy
2nd wins R wins

Left starts

. POSITIVE FUZZY
& L has a
winning G>0 Gllo
strategy
L wins Ist wins

Figure 4: The four outcome classes.
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It is convenient to combine these outcome classes and symbols in pairs.

If Left Right |  Left Right |has a winning strategy
provided Right Left Left Right |starts, then we

write G20 | GL0 | G|p0 | G 4|0 [corresponding to

the 1st col | 1st row | 2nd row | 2nd col |of Figure 4.

6 The Negative of a Game

A device to breathe new life into an otherwise one-sided contest is to allow
a novice opponent, when he feels he is losing, to turn the board around, to
reverse the roles of the two players, to handicap his more skilled adversary,
by asking her to defend what appears to him to be an inferior position.
This replaces the game by its negative. Formally, the negative of G,

-G = {-GF®| - G*}

is defined inductively [WW, 35]. Remember that —GR, for example, is
short for the set {—Gf1, —GRz . .}, whose members are simpler games
‘than —@G, and hence have been defined earlier.

7  Sums of Games

There are many ways of playing two or more games simultaneously, but
often the most natural is what we call the sum, or disjunctive com-
pound [ONAG, 75; WW, 33]. Nim, for example, is the sum of a number
. of games of one-heap Nim. In the sum of two or more component games,
the player whose turn it is to move selects one component and makes a
legal move in it: '

G+H={G*+H,G+HYGR +H, G+ H?}.

Once again this is an inductive definition: GE+ H, for example, represents
the set of options {G®1 + H, G®2 + H, ...} each of which is a simpler
game than G + H, so that addition there is already defined.

It’s not hard to see that sums are commutative and associative, that
G + 0 = G, and [ONAG, Theorem 51] that G + (—G) = 0. In that last
sentence we’ve used zero in two quite different senses. In G+0=G we -
intended 0 to mean the Endgame, { | }. In G + (—G) = 0 we intended
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“= 0” to mean “is a zero game”, that is “belongs to the (very large!)
equivalence class of games for which the second player has a winning
strategy”. Check that 1 + (—1) = 0 and that *x + * = 0, so that we can
speak of the games 1 4+ (—1) and * + x as having the same value, 0, as
the Endgame, even though their forms are different.

More generally, we will say that two games are equivalent, and have
the same value, and write G = H, if the game G + (—H) is a second
player win. With the above definitions of sum, negative and zero, the
set of all games forms a commutative group. Moreover, games form a
partially ordered set, and we write G > H just if G — H > 0, that is,
if Left can win the sum G + (—H), no matter who starts. Our notation
is justified by theorems such as the following, proved in [ONAG, 76]. If
G >0and H >0, then G+ H > 0. If H is a zero game (that is, a win
for the second player), then G + H has the same outcome as G. If H — K
is a zero game, then G + H and G + K have the same outcome.

8 The Games Born on Day Two

As day two dawns we have four games to play with, and so 2% = 16 sets of
games. There are 16 choices for Left’s options and 16 for Right’s, giving
a potential of 256 games on day two. However, things are not quite that
complicated, in that for each player, some options are clearly preferable
to others. The four games born on day one can be arranged in the lattice
(in the poset sense, rather than the geometrical sense) of Figure 5, in
which Left’s preferences are placed higher, and Right’s are lower.

/\
\/

Figure 5: The lattice of games born on day one.

The only set of options for which there is any doubt in either player’s
mind about the best move, is the incomparable pair {0,*}. So, for a
player’s options we need consider only.six possibilities: the empty set,
the four singletons, and' this incomparable pair. Among the resulting
62 possibilities for games born on day two, qust 22 are meqmvalent and



