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Electrospinning of nanofibers and the
charge injection method

D. R. SALEM, Charge Injection Technologies Inc., USA

1.1 Introduction

The use of electric charge to break up liquids into small particles has been
well known and extensively studied for over a century, but commercial
applications have been constrained by difficulties in surmounting flow rate
limitations associated with the underlying physics of the process. This is true
for both electrospraying, in which low-viscosity liquids can be atomized into
droplets, and electrospinning, in which viscoelastic liquids can be transformed
into filaments of submicrometer and nanometer dimensions.

In this chapter, we will start by reviewing the principal forces involved in
electrostatic atomization, which also form the basis of the electrospinning
process, and then discuss the development of the science and technology of
electrospraying and electrospinning, with particular emphasis on efforts to
increase the rate at which nanofibers can be electrospun. After reviewing
advances in the conventional approach to charging liquids in electrospraying
and electrospinning (usually referred to as the capillary or needle method)
we will highlight an alternative charging technology, known as the charge
injection method, which is being developed for the production of nanometer
and submicrometer fibers at exceptionally high output rates.

1.2 Principles of electrostatic atomization

It has long been known that application of electric charge to a liquid droplet
causes instability of the liquid, resulting in distortion of the droplet or meniscus
and in the ejection of liquid filaments and/or satellite droplets.'™ The effect
is explained as a competition between the Coulomb repulsion of like charges
favoring droplet distortion/partitioning and surface tension opposing droplet
division. For example, in the case of a droplet of a conductive fluid in an
electric field (where the charge accumulates at the droplet surface and there
is no electric field inside the droplet) the pressure balance is given by:
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20 e’
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where e is the total droplet charge, R is the droplet radius, ¢ is the surface
tension and & is the vacuum permittivity.

It is informative that the relationship between the pressure drop and droplet
radius is not monotonic (Fig. 1.1) — the electrostatic pressure, e2/(327r280R4),
becomes dominant as droplet radius becomes smaller (charge density increases),
so that the function passes through a maximum and then reaches a point at
which the pressure in the atmosphere and the pressure in the droplet are the
same {p = 0). This point is associated with the electrostatic Rayleigh criterion,
and can be interpreted as the maximum charge density that a droplet of a
given diameter can withstand. Rewritten as the charge per mass, the Rayleigh
relation takes the more familiar form:®

e {288800

The non-monotonic relationship between pressure drop and droplet radius
has important consequences for understanding and predicting droplet/vapor
coexistence and the behavior of an evaporating charged droplet, for which
the pressure balance can be expressed as:®

2o
lan/PO:%T—APz}YT—(—————e——) [1.3]

pl
0.5{

-0.57

-1.0 1

-1.51

2.0t

1.7 Dimensionless pressure drop p = AP{/2c as a function of the
dimensionless droplet radius X = A/¢, where ¢ is the characteristic
length scale.
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where P, is the saturation pressure for a planar vapor/liquid uncharged surface.
Kornev et al. have employed this relationship to anticipate the destiny of
charged droplets surrounded by their own vapor under a range of pressure
conditions.®

It is noteworthy, especially in relation to our later discussions on
electrospinning, that cylindrical liquid columns are also subject to the Rayleigh-
type instability, in which case the pressure balance is given by:®

2
ap=%__K 1.4
R 8n?¢yR? (141
where « is the charge per unit length of the filament. Written in terms of
charge density, the Rayleigh criterion for a charged liquid becomes:

6doe,
= z—— 1.5
colurn d3p2 -]

It is immediately apparent from Equations [1.2] and [1.5] that the charge
required to reach the Rayleigh limit is about two times smaller for a column
of liquid than for a droplet of the same radius.

The above analysis relates to charge-induced liquid break-up under static
conditions, in order to provide an understanding of the primary forces involved,
but the charge-induced break-up of flowing liquids is complicated by the
superposition hydrodynamic perturbations and electrostatic instabilities that
result in a variety of disruption behaviors, some of which will be discussed
below.

[4

M

1.3 Electrospraying and electrospinning by the
capillary method

1.3.1 Operating modes

The earliest, and still the most widespread, practical use of electrostatic
instabilities in liquids is electrospraying. It should be pointed out, however,
that the term electrospraying is frequently applied to processes in which the
primary liquid break-up is not generated by electrostatic forces, but by high
pressure or some other mechanical method. In this case, the applied electric
field mainly serves to charge the droplets so that they can be efficiently
attracted to a grounded target and the technology is better described as
electrostatically assisted spraying. Important commercial examples include
electrostatic paint guns and agricultural sprayers, where large volumes of
charged particles must be generated.

Electrospraying in which the primary break-up process (as well as any
subsequent droplet division) occurs as a direct result of electrostatic forces
is often referred to as electrohydrodynamic (EHD) atomization, and tends to
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find application where flow rates can be low or minuscule. This is because
EHD atomization using conventional charging technologies (often referred
to as the capillary method) cannot operate at high rates of liquid delivery.

In a common set-up, a conductive liquid is delivered to the tip of a metal
capillary, which is at high negative or positive potential (Fig. 1.2). As a result
of the electric field generated, charge accumulates at the surface of the
pendant droplet formed at the tip of the capillary and creates an instability
that deforms the hemispherical droplet into a cone shape, often referred to as
a Taylor cone.®> * 7 At a sufficiently high field strength, a jet of liquid is
continuously ejected from the apex of the cone and breaks up into charged
particles. In this cone-jet mode of operation,® a stable, continuous stream of
charged particles can be generated.

The break-up of the jet may be via an axisymmetric varicose instability,
a bending/whipping instability or, more rarely, a ramified mode involving
distortion of the jet’s circular cross-section and emission of lateral sub-jets
(Fig. 1.3).'% 1! The varicose instability occurs at relatively low surface charge
and is similar in manner to the break-up of a neutral jet. This mode can
produce charged sprays with highly monodisperse droplet diameters and
mean diameters ranging from a few nanometers to hundreds of micrometers,
depending on field strength and fluid properties such as conductivity and
viscosity.

As surface charge on the jet increases (by raising the flow rate!'™'* or the

applied voltage'' > 1° to increase current), the axisymmetric break-up mode
Syringe
Liquid
<— Capillary
fo— Taylor cone
Voltage and liquid jet
source
Whipping filament

(electrospinning)

Charged droplets
...... : (electrospraying)

1.2 Typical set-up for electrospraying/electrospinning by the capillary
method. The inset is an example of a pendant droplet, distorted by
the electric field, and the emitted jet (adapted from Ref. 9).

Collector electrode
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Axisymmetric Bending/whipping Ramified

1.3 Principal jet break-up modes {adapted from Ref. 11).

transitions to the bending/whipping instability.'® '+ 1® The whipping motion
rapidly thins the jet and breaks it into a spray with polydisperse droplet
diameters having mean values usually of the order of tens of micrometers.

If the jet is highly charged, the electric stresses can overcome surface
tension, causing the cross-section of the jet to deform or bulge in one or
more locations, from which fine sub-jets are released.'® ! This ramified
mode is of course related to the electrostatic Rayleigh break-up mode anticipated
by Equation [1.4], although this equation cannot be directly used to indicate
the charge threshold for Coulombic rupture in a column of liquid that is
flowing. For example, it has been shown that the stretching of a charged
liquid column, as in an accelerating jet, not only introduces hydrodynamic
perturbations, but also modifies (compared with a static liquid column) the
relationship between Laplacian pressure and electrostatic pressure in a way
that tends to stabilize the column against Coulombic disruption.®

Ramified jet break-up is seldom observed in the capillary method of
electrospraying because corona discharge prevents reaching the required
field strength. However, it may be noted that dramatic Coulombic explosion
of a liquid helium jet was observed by Tsao et al. using capillary
electrospraying.!” No Taylor cone was formed, and the shattering of the
helium jet into droplets of 1-10 um diameter was attributed to charge densities
that — owing to high current and exceptionally low surface tension — were
computed to be 50 times the Rayleigh limit (for a stationary liquid cylinder).
In this case, the ratio of electric stress to surface tension was evidently
sufficient to overwhelm any stabilizing effects of the accelerating jet.

If the charged droplets from any electrospraying process evaporate
sufficiently rapidly, they may undergo further disruption and division after
the initial break-up, since the shrinking droplets (both parent and daughter
droplets) will repeatedly attain the threshold charge for electrostatic Rayleigh



