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PREFACE

The aim of the present book is to describe a foundation for
synthetic reasoning in differential geometry. We hope that such a
foundational treatise will put the reader in a position where he,
in his study of differential geometry, can utilize the synthetic
method freely and rigorously, and that it will give him notions and
language by which such study can be communicated.

That such notions and language is something that till recent-
ly seems to have existed only in an inadequate way is borne out by
the following statement of Sophus Lie, in the preface to one of his

fundamental articles:

"The reason why I have postponed for so long these investiga-
tions, which are basic to my other work in this field, is es-
sentially the following. I found these theories originally by
synthetic considerations. But I soon realized that, as expedi-
ent [zweckmissig] the synthetic method is for discovery, as
difficult it is to give a clear exposition on synthetic in-
vestigations, which deal with objects that till now have al-
most exclusively been considered analytically. After long
vacillations, I have decided to use a half synthetic, half
analytic form. I hope my work will serve to bring justifica-

tion to the synthetic method besides the analytical one."

(Allgemeine Theorie der partiellen Differentialgleichungen

erster Ordnung, Math. Ann. 9 (1876).)

What is meant by "synthetic" reasoning? Of course, we do not
know exactly what Lie meant, but the following is the way we would

describe it: It deals with space forms in terms of their structure,



i.e. the basic geometric and conceptual constructions that can be
performed on them. Roughly these constructions are the morphisms
which constitute the base category in terms of which we work ; the
space forms themselves being objects of it.

This category is cartesian closed, since, whenever we have

A

formed ideas of "spaces" A and B, we can form the idea of B y

the "space" of all functions from A to B.

The category theoretic viewpoint prevents the identification
of A and B with point sets (and hence also prevents the forma-
tion of "random" maps from A to B). This is an old tradition in
synthetic geometry, where one, for instance, distinguishes between
a "line" and the "range of points on it" (cf. e.g. Coxeter [8 ]
p.20).

What categories in the "Bourbakian" universe of mathematics
are mathematical models of this intuitively conceived geometric cat-
egory? The answer is: many of the "gros toposes" considered since
the early 60's by Grothendieck and others, - the simplest example
being the category of functors from commutative rings to sets. We
deal with these topos theoretic examples in Part III of the book.
We do not begin with them, but rather with the axiomatic develop-
ment of differential geometry on a synthetic basis (Part I), as
well as a method of interpreting such development in cartesian
closed categories (Part I1). We chose this ordering because we want
to stress that the axioms are intended to reflect some true proper-
ties of the geometric and physical reality; the models in Part III
are only servants providing consistency proofs and inspiration for
new true axioms or theorems. We present in particular some models E
which contain the category of smooth manifolds as a full subcategory
in such away that "analytic" differential geometry for these corre-
sponds exactly to "synthetic" differential geometry in E.

Most of Part I, as well as several of the papers in the bibli-
ography which go deeper into actual geometric matters with synthe-
tic methods, are written in the "naive" style. By this, we mean

that all notions, constructions, and proofs involved are presented



as if the base category were the category of sets; in particular
all constructions on the objects involved are described in terms of
"elements" of them. However, it is necessary and possible to be able
to understand this naive writing as referring to cartesian closed
categories. Iﬁ is necessary because the basic axioms of synthetic
differential geometry have no models in the category of sets (cf. I
§1); and it is possible: this is what Part II is about. The method
is that we have to understand by an element b of an object B a
gggeralized elenent, that is, a map b: X->B, where X 1is an ar-

bitrary object, called the stage of definit{ggj or the domain of

variation of the element b.

Elements "defined as different stages" have a long tradi-
tion in geometry. In fact, a special case of it is when the geome—
ters say: A circle has no real points at infinity, but there are
two imaginary points at infinity such that every circle passes
through them. Here 1R and € are two different stages of mathe-
matical knowledge, and something that does not yet exist at stage
IR may come into existence at the "later" or "deeper" stage (.

— More important for the developments here is passage from stage

R to stage R[e], the "ring of dual numbers over TR":

Rle] = RIx]/ (x%).

It is true, and will be apparent in Part III, that the notion of
elements defined at different stages does correspond to this clas-
sical notion of elements defined relative to different commutative
rings, like R, €, and R[e], cf. the remarks at the end of

ITT §i.

When thinking in terms of physics (of which geometry of space
forms is a special case), the reason for the name "domain of vari-
ation" (instead of "stage of definition") becomes clear: for a non-
atomistic point of view, a body B is not described just in terms
of its "atoms" b€B, that is, maps 1 - B, but in terms of "par-

ticles" of varying size X, or in terms of motions that take place



in B and are parametrized by a temporal extent Xj both of these
situations being described by maps X - B for suitable domain of

variation X.

The exercises at the end of each paragraph are intended to
serve as a further source of information, and if one does not want
to solve them, one might read them.

Historical remarks and credits concerning the main text are
collected at the end of the book. If a specific result is not
credited to anybody, it does not necessarily mean that I claim
credit for it. Many things developed during discussions between
Lawvere, Wraith, myself, Reyes, Joyal, Dubuc, Coste, Coste-Roy,
Bkouche, Veit, Penon, and others. Personally, I want to acknowl-
edge also stimulating questions, comments, and encouragement from
Dana Scott, J. Bénabou, P. Johnstone, and from my audiences in Mi-
lano, Montréal, Paris, zaragoza, Buffalo, Oxford, and in particular
parhus. I want also to thank Henry Thomsen for valuable comments
to the early drafts of the book.

The Danish Natural Science Research Council has on several
occasions made it possible to gather some of the above-mentioned
mathematicians for work sessions in Aarhus. This has been vital
to the progress of the subject treated here, and I want to express
my thanks.

Warm thanks also to the secretaries at Matematisk Institut,
Aarhus, for their friendly help, and in particular, to Else ¥Ynd-
gaard for her expert typing of this book.

Finally, I want to thank my family for all their support,
and for their patience with me and the above-mentioned friends

and colleagues.
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PART I
THE SYNTHETIC THEORY

INTRODUCTION

Lawvere has pointed out that "In order to treat mathematical-
ly the decisive abstract general relations of physics, it is neces-
sary that the mathematical world picture involve a cartesian closed
category E of smooth morphisms between smooth spaces".

This is also true for differential geometry, which is a scien-
ce that underlies physics. So everything in the present Part I takes
place in such cartesian closed category E. The reader may think of
E as "the" category of sets, because most constructions and
notions which exist in the category of sets exist in such E; there
are some exceptions, like use of the "law of excluded middle", cf.
Exercise 1.1 below. The text is written as if E were "the" cate-
gory of sets. This means that to understand this part, one does not
have to know anything about cartesian closed categories; rather, one
learns it, at least implicitely, because the synthetic method uti-
lizes the cartesian closed structure all the time, even if it is
presented in set theoretic disguise (which, as Part II hopefully
will bring out, is really no disguise at all).

Generally, investigating geometric and gquantitative relation-
ships brings along with it understanding of the logic appropriate
for it. So, it also forces E fwhich represents our understanding
of smoothness) to have certain properties, and not to have certain
others. In particular, £ must have finite inverse limits, and for

some of the more refined investigations, to be a topos.



I.1l: BASIC STRUCTURE ON THE GEOMETRIC LINE

The geometric line c¢an, as soon as one chooses two distinct
points on it, be made into a commutative ring, with the two points
as respectively 0 and 1. This is a decisive structure on b 1§ ol
already known and considered by Euclid, who assumes that his
reader is able to move line segments around in the plane (which
gives addition), and who teaches his reader how he, with ruler and
compass, can construct the fourth proportional of three line seg-
ments; taking one of these to be [0,1], this defines the product
of the two others, and thus the multiplication on the line. We de-

note the line, with its commutative ring structure* (relative to

some fixed choice of 0 and 1) by the letter R.

Also, the geometric plane can, by some of the basic structure
(ruler—and—compass—constructions again), be identified with
R XR = R2 (choose a fixed pair of mutually orthogonal copies of
the line R in it), and similarly, space with R3.

Of course, this basic structure does not depend on having the
(arithmetically constructed) real numbers R as a mathematical
model for R.

Euclid maintained further that R was not just a commuta-
tive ring, but actually a field. This follows because of his
assumption: for any two points in the plane, either they are equal,
or they determine a unique line.

We cannot agree with Euclid on this point. For that would im-

ply that the set D defined by

Di= [[x€R|x% = 0] <R

* Actually, it is an algebra over the rationals, since the elements

2 = 141, 3 = 1+1+1, etc., are multiplicatively invertible in R.



consists of 0O alone, and that would immediately contradict our

Axiom 1. For any* g: D » R, there exists a unique bER
such that

Vd€D: g(d) = g(0) + d-b.

Geometrically, the axiom expresses that the graph of g is
a piece of a unique straight line &, namely the one through

(0,g(0)) and with slope b

"1

graph (g)

A

Y
o)

D

(in the picture, g is defined not just on D, but on some lara-
er set).

Clearly, the notion of slope, which thus is built in, is a
decisive abstract general relation for differential calculus. Be-
fore we turn to that, let us note the following consequence of
the uniqueness assertion in Axiom 1:

(VAED: deb, = d-bz) = (bl = b2),

1

which we verbalize into the slogan

*¥ We really mean: "for any gERD..."; this will make a certain
difference in the category theoretic interpretation with generaliz-
ed elements. Similarly for the f in Theorem 2.1 below and several
other places.



"universally quantified d's may be cancelled"

("cancelled" here meant in the multiplicative sense) .
The axiom may be stated in succinct diagrammatic form in

terms of Cartesian Closed Categories. Consider the map O:

Rx R —2 gP (1.1)
given by

(a,b) —>[d > a + d-b].

Then the axiom says

Axiom 1. o is invertible (i.e. bijective).
Let us further note:

Proposition 1.1. The map & is an R-algebra homomorphism if
we make RXR into an R-algebra by the "ring of dual numbers" mul-
tiplication

(al,bl)-(az,b2) = (al-az,al-b2 + az-bl) (1.2)

Proof. The pointwise product of the maps D - R

dbl— a; + d-bl 4 |— a, + d-bé

is
db— (al+d~b1)'(a2+d~b2)
2
= a,-a, +d:(a,*b,+a,*b,) + d°«b_ +b_,

1 72 1 =2 271 172

but the last term vanishes because d2 =0 VA € D.



If we let R[e] denote RxR, with the ring-of-dual-numbers

multiplication, we thus have

Corollary 1.2. Axiom 1 can be expressed: The map o in (1.1)
gives an R-algebra isomorphism

R[C] ~‘> RD.

Assuming Axiom 1, we denote by B and VY, respectively, the

two composites

-3 proj
B = rP R X R lﬁR

(1.3)
=1 proj2
Y=R R x R R

Both are R-linear, by Proposition 1.1; B is just 'evaluation at
0€D' and appears later as the structural map of the tangent

bundle of R; Y is more interesting, being the concept of slope
itself. It appears later as "principal part formation", (§7), or

as the "universal 1l-form", or "Maurer-Cartan form" (§18), on (R,+).

EXERCISES AND REMARKS

1.1 (Schanuel). The following construction * is an example
of a use of "the law of excluded middle". Define a function

g: D - R by putting

g@ =0 if d =0

{ g(d) =1 if d4d%0

If Axiom 1 holds, d = {0} is impossible, hence, again by essen-
tially using the law of excluded middle, we may assume HdOGI)

with do +0. By Axiom 1

Vd€D: g(d) = g(0) + d*b .

Substituting dO for d yields 1 = g(do) =0 + do-b, which, when
squared, yields 1 = 0.



Moral, Axiom 1 is incompatible with the law of excluded
middle. Either the one or the other has to leave the scene. In Part
I of this book, the law of excluded middle has to leave, being in-
compatible with the natural synthetic reasoning on smooth geometry
to be presented here. In the terms which the logicians use, this
means that the logic employed is 'constructive' or 'intuitionistic'.
We prefer to think of it just as 'that reasoning which can be carri-

ed out in all sufficiently good cartesian closed categories'.

1.2 (Joyal). Assuming Pythagoras' Theorem, it is correct to

define the circle around (a,b) with radius ¢ to be
2
MGy €RY | (x-a)2 + (y-b)2 = 27

Prove that D is exactly the intersection of the unit circle

around (0,1) and the x-axis

(identifying, as usal, R with the x-axis in R2).

Remark. This picture of D was proposed by Joyal in 1977. But
earlier than that: Hjelmslev [26] experimented in the 1920's with a
geometry where, given two points in the plane, there exists at
least one line connecting them, but there may exist more than one
without the points being identical; this is the case when the points
are 'very near' each other. For such geometry, R 1is not-a field,
either, and the intersection in the figure above is, like here, not

just {0}. But even earlier than that: Hjelmslev quotes the 01d



Greek philosopher, Protagoras, who wanted to refute Euclid by the
argument that it is evident that the intersection in the figure con-

tains more than one point.

1.3. If d€D and r€R, we have d-r€R. If dlED and
d2€D, then dl+d2€D iff dl-d2 = 0 (for the implication 's' .
one must use that 2 is invertible in R).

(In the geometries that have been built based on Hjelmslev's

2 2

ideas, dl = O/\d2 = O=>dl-d2 = 0, but this assumption is incom-

patible with Axiom 1, see Exercise 4.6 below.)

1.4 (Galuzzi and Meloni; cf.[50] p. 6). Assume E € R con-
tains 0 and is stable under multiplication by -1. If 2 is in-
vertible in R, and if Axiom 1 holds for E (i.e., when D in

Axiom 1 is replaced by E), then E < D.

1.5. If R 1is any commutative ring, and g 1s any polyno-
mial (with integral coefficients) in n variables, g gives rise
to a polynomial function Rn—>R, which may be denoted gR or just
g. For the ring RX (X an arbitrary object), gRX
ed with (gR)X. To say that a map B: R>S is a ring homomor-

gets identifi-

phism is equivalent to saying that for any polynomial g (in n

variables, say)
n -_
gg 0 B =RBo 9g-

This is the viewpoint that the algebraic theory consisting of poly-
nomials is the algebraic theory of commutative rings ,cf.Appendix A.
In particular, Proposition 1.1 can be expressed: for any

polynomial g (in n variables, say), the diagram



(R[eDH™ - — EHYE @Y
|
D
IR[e] IR (L.4)
Rle] R
o

commutes. In IIT § 4 ff. we shall meet a similar statement, but for

n
arbitrary smooth functions g: R — R, not just polynomials.



