Michael Butler
Michael G. Hinchey
Maria M. Larrondo-Petrie (Eds.)

Formal Methods and
Software Engineering

9th International Conference
on Formal Engineering Methods, ICFEM 2007
Boca Raton, FL, USA, November 2007, Proceedings

LNCS 4789

@ Springer

- /% ‘Michael Butler Michael G. Hinchey
. ../ Maria M. Larrondo-Petrie (Eds.)

Formal Methods and
Software Engineering

Oth International Conference

on Formal Engineering Methods, ICFEM 2007
Boca Raton, FL, USA, November 14-15, 2007
Proceedings

£ springer WM

E2007003646

Volume Editors

Michael Butler

University of Southampton, School of Electronic and Computer Science
Highfield, Southampton, SO17 1BJ, UK

E-mail: m.j.butler@ecs.soton.ac.uk

Michael G. Hinchey

Loyola College in Maryland, Department of Computer Science
4501 N. Charles Street, Baltimore, MD 21210, USA

E-mail: mike.hinchey @usa.net

Maria M. Larrondo-Petrie

Florida Atlantic University, Department of Computer Science and Engineering
777 Glades Road SE-308, Boca Raton, FL 33431-0991, USA

E-mail: petrie @fau.edu

Library of Congress Control Number: 2007938401

CR Subject Classification (1998): D.2.4, D.2, D.3, E.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-76648-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76648-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12187614 06/3180 543210

Preface

Formal methods for the development of computer systems have been extensively
researched and studied. A range of semantic theories, specification languages,
design techniques, and verification methods and tools have been developed and
applied to the construction of programs of moderate size that are used in critical
applications. The challenge now is to scale up formal methods and integrate
them into engineering development processes for the correct construction and
maintenance of computer systems. This requires us to improve the state of the
art by researching the integration of methods and their theories, and merging
them into industrial engineering practice, including new and emerging practice.

ICFEM, the International Conference on Formal Engineering Methods, aims
to bring together those interested in the application of formal engineering meth-
ods to computer systems. Researchers and practitioners, from industry, academia,
and government, are encouraged to attend and to help advance the state of the
art. The conference particularly encourages research that aims at a combination
of conceptual and methodological aspects with their formal foundation and tool
support, and work that has been incorporated into the production of real systems.

This volume contains the papers presented at ICFEM 2007 held November
14-15, 2007 in Florida Atlantic University, Boca Raton, Florida. There were 38
submissions. Each submission was reviewed by four Program Committee mem-
bers. The committee decided to accept 19 papers based on originality, technical
soundness, presentation, and relevance to formal engineering and verification
methods. We thank the Program Committee members and the other referees for
their effort and professional work in the reviewing and selecting process. The pro-
gram also includes contributions from the two keynote speakers: Jean-Raymond
Abrial and Tom Maibaum. Professor Abrial gave a talk on a system development
process with Event-B and the Rodin Platform while Professor Maibaum gave a
talk on the challenges of software certification.

A workshop on the verifiable file store mini-challenge was held on November
13,2007 co-located with ICFEM 2007. This workshop was organized by Jim Wood-
cock and Leo Freitas as part of the Grand Challenge in Verified Software.

ICFEM 2007 was jointly organized and sponsored by Florida Atlantic Uni-
versity, Loyola College in Maryland, and the University of Southampton and
we would like to thank all those who helped in the organization. We used the
Easychair system to manage the submissions, refereeing, paper selection, and
proceedings production. We would like to thank the Easychair team for a very
powerful tool.

August 2007 Michael Butler
Mike Hinchey
Maria M. Larrondo-Petrie

Conference Organization

Conference Chair

General Chair Mike Hinchey (Loyola College in Maryland, USA)
Program Chairs Michael Butler (University of Southampton, UK)
Maria M. Larrondo-Petrie (Florida Atlantic University,
USA)
Publicity Chair ~ Denis Gracanin (Virginia Tech, USA)

Program Committee

Keijiro Araki Shriram Krishnamurthi ~Mannu Satpathy
Farhad Arbab Kung-Kiu Lau Klaus-Dieter Schewe
David Basin Rustan Leino Kaisa Sere

Ana Cavalcanti Michael Leuschel Wuwei Shen
Jessica Chen Xuandong Li Marjan Sirjani
Yoonsik Cheon Zhiming Liu Ketil Stglen

Kai Engelhardt Shaoying Liu Sofiene Tahar
Eduardo B. Fernandez Tiziana Margaria Helen Treharne
Colin Fidge Huaikou Miao T.H. Tse

John Fitzgerald Peter O’Hearn Farn Wang
Marc Frappier Michael Poppleton Wang Yi
Marcelo Fabidn Frias Marie-Laure Potet Jian Zhang

Uwe Gléasser Anders Ravn Jin Song Dong
Joseph Kiniry Davide Sangiorgi Zhenhua Duan

Local Organization

Eduardo B. Fernandez
Michael VanHilst
Nelly Delessy-Gassant
Maureen Manoly
Colleen Glazer

External Reviewers

Rezine Ahmed Neil Evans Olga Grinchintein
Bernhard Aichernig Bernd Fischer Osman Hasan
Joachim Baran Wan Fokkink Felix Klaedtke

Achim D. Brucker Amjad Gawanmeh Istvan Knoll

VIII Organization

Linas Laibinis

Yuan Fang Li

Sotiris Moschoyiannis

Juan Antonio
Navarro-Pérez

Joseph Okika

Gennaro Parlato

Daniel Plagge

Marta Plaska

Sampath Prahlad
Zongyan Qiu

S. Ramesh

Niloofar Razavi

Atle Refsdal

Ragnhild Kobro Runde
Mehrnoosh Sadrzadeh
Mayank Saksena
Corinna Spermann

ICFEM Steering Committee

He Jifeng (East China Normal University, China)
Keijiro Araki (Kyushu University, Japan)

Jin Song Dong (National University, Singapore)
Chris George (UNU-IIST, Macao)

Mike Hinchey (Loyola College in Maryland, USA)
Shaoying Liu (Hosei University, Japan)

John McDermid (University of York, UK)

Tetsuo Tamai (University of Tokyo, Japan)

Jim Woodcock (University of York, UK)

Volker Stolz

Jan Stocker

Jun Sun

Leonidas Tsiopoulos
Andrzej Wasowski
Mohamed Zaki
Miaomiao Zhang
Jianhua Zhao

Hui Liang

Lecture Notes in Computer Science 4789

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum .

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4158
please contact your bookseller or Springer

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4789* M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol. 4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Krimer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, I. Niemeld (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. X VI, 201 pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovié, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IL. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, E. Kordon (Eds.j, Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
, ods for Performance Evaluation. VIL, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. X1, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
& Proofs. IX, 21 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

. Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIIL, 157 pages. 2007.

" Vol. 4364: T. Kithne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

. Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Dur4n, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodergder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIIL, 317 pages. 2007.

FHo el

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.). Interactive
Systems. X1, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. X1V, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nufiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. XVII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4214: C. Hofmeister, I. Crnkovi¢, R. Reussner
(Eds.), Quality of Software Architectures. X, 215 pages.
2006.

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. XVIII, 774 pages.
2006.

Vol. 4199: O. Nierstrasz, J. Whittle, D. Harel, G. Reg-
gio (Eds.), Model Driven Engineering Languages and
Systems. XVI, 798 pages. 2006.

Vol. 4192: B. Mohr, J.L. Triff, J. Worringen, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVI, 414 pages. 2006.

Vol. 4184: M. Bravetti, M. Niiez, G. Zavattaro (Eds.),
Web Services and Formal Methods. X, 289 pages. 2006.

Vol. 4166: J. Gérski (Ed.), Computer Safety, Reliability,
and Security. X1V, 440 pages. 2006.

Table of Contents

Invited Talks

A System Development Process with Event-B and the Rodin
Platform o 1
Jean-Raymond Abrial

Challenges in Software Certification 4
Tom Maibaum
Security and Knowledge

Integrating Formal Methods with System Management 19
Martin de Groot

Formal Engineering of XACML Access Control Policies in VDM4+ 37
Jeremy W. Bryans and John S. Fitzgerald

A Verification Framework for Agent Knowledge 57
Jin Song Dong, Yuzhang Feng, and Ho-fung Leung

Embedded Systems

From Model-Based Design to Formal Verification of Adaptive
Embedded Systems. 76
Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié

Machine-Assisted Proof Support for Validation Beyond Simulink 96
Chunging Chen, Jin Song Dong, and Jun Sun

VeSTA: A Tool to Verify the Correct Integration of a Component in a
Composite Timed System 116
Jacques Julliand, Hassan Mountassir, and Emilie Oudot

Testing

Integrating Specification-Based Review and Testing for Detecting
Errors in Programs........... 136
Shaoying Liu

Testing for Refinement in CSP......| 151
Ana Cavalcanti and Marie-Claude Gaudel

X Table of Contents

Reducing Test Sequence Length Using Invertible Sequences. 171
Lihua Duan and Jessica Chen

Automated Analysis

Model Checking with SAT-Based Characterization of ACTL
Formulas.o 191
Wenhui Zhang

Automating Refinement Checking in Probabilistic System Design 212
Carlos Gonzalia and Annabelle Mclver

Model Checking in Practice: Analysis of Generic Bootloader Using
SPIN 232
Kuntal Das Barman and Debapriyay Mukhopadhyay

Model Checking Propositional Projection Temporal Logic Based on
ST . 5 55 15 5 om0 o e o 6 o 8 0 B 8 R O B 246
Cong Tian and Zhenhua Duan

Hardware

A Denotational Semantics for Handel-C Hardware Compilation 266
Juan Ignacio Perna and Jim Woodcock

Automatic Generation of Verified Concurrent Hardware. 286
Marcel Oliveira and Jim Woodcock

Modeling and Verification of Master/Slave Clock Synchronization
Using Hybrid Automata and Model-Checking........................ 307
Guillermo Rodriguez-Navas, Julidn Proenza, and Hans Hansson

Concurrency

Efficient Symbolic Execution of Large Quantifications in a Process
AITEDTE 505005009 0 505 308 WS 5B HE T8 5 o 00 1 o e s 0 327
Benoit Fraikin and Marc Frappier

Formalizing SANE Virtual Processor in Thread Algebra 345
Thuy Duong Vu and Chris Jesshope

Calculating and Composing Progress Properties in Terms of the
Leads-to Relation 366
Arjan J. Mooij

Author Index 387

A System Development Process with Event-B
and the Rodin Platform

J.-R. Abrial

jabrial@inf.ethz.ch

Event-B is the name of a mathematical (set-theoretic) approach used to develop
complex discrete systems, be they computerized or not.

The Rodin platform is an open tool set devoted to supporting the devel-
opment of such systems. It contains a modeling database surrounded by various
plug-ins: static checker, proof obligation generator, provers, model-checkers, an-
imators, UML transformers, requirement document handler, etc. The database
itself contains the various modeling elements needed to construct discrete tran-
sition system models: essentially variables, invariants, and transitions.

Formal Development. With the help of this palette, users can develop math-
ematical models and refine them. In doing so, they are able to reason, modify,
and decompose their models before starting the effective implementation of the
corresponding systems. Such an approach is well known and widely used in many
mature engineering disciplines where reasoning on a abstract representation of
the future system is routine. Just think of the usage of blueprints made by
architects within a building construction process.

Technology Transfer. One of the main difficulties in transferring this technol-
ogy is not that of its mastering by industry engineers (a common opinion shared
by many analysts). It is rather, we think, the incorporation of this technology
within the industrial development process. We believe that the above argument,
about the difficulty of mastering this technology is, in fact, a way of hiding (con-
sciously or not) the one concerning the incorporation within the development
process.

This Presentation. The aim of this presentation is to show that the Event-B
technology can be put into practice. For this, we must follow a well defined de-
velopment process. That process is precisely the one which has to be transferred
to industry. The Rodin platform, in its final form, will be the supporting tool
for achieving this.

Before describing the Event-B development process however, we make precise
what we mean by an industrial development process in general terms.

Industrial Development Processes are now common practice among im-
portant critical system manufacturers (train signalling system companies, avionic
and space companies, automotive manufacturers, power system designers, de-
fense sector industries, etc.). A system development process contains the defini-
tion of the various milestones encountered in the system construction together
with the precise definition of what is to be done between these milestones, by

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 1-3, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J.-R. Abrial

whom, and within which delays. It also contains different ways of re-iterating on
these milestones in case the process encounters some difficulties.

Usually, industrial managers are very reluctant to modify their development
processes because: (1) it is part of their company culture and image, (2) it is
difficult to define and make precise, and (3) it is even more difficult to have them
accepted and followed by working engineers.

In order to know how to modify the development process due to the introduc-
tion of some formal method technology (Event-B and Rodin) in the construction
of complex systems, it is clearly very important to understand that this process
is aimed at obtaining systems which can be considered to be correct by construc-
tion. This presentation does not pretend to solve all related problems nor to give
the key to a successful incorporation of formal methods in industry: it aims at
providing the beginning of a systematic way of envisaging these matters.

Let us now briefly present the Event-B development process and show how
the Rodin platform supports it.

Requirement Document. After the initial feasibility studies phase which is
not subsequently modified, the second phase of the process is the writing of
the requirement document. It must be pointed out that most of the time such
documents are very poor: quite often, they just contain the pseudo-solution of
a problem which, to begin with, is not stated. Our opinion is that it is very
risky to proceed further with such poor documents. More precisely, we think
that it is necessary to rewrite them very carefully in a systematic fashion. Each
requirement must be stated by means of a short English statement which is well
recognizable and clearly labelled according to some taxonomy to be defined for
each project.

The Rodin platform in its final form will provide a plug-in able to support
the gradual construction of such structured requirement documents, to retrieve
them, and to form the initial basis of the necessary traceability.

Refinement Strategy. The next phase consists in defining a temporary refine-
ment strategy. It contains the successive steps of the refined models construction.
Clearly, it is out of the question to construct a unique model taking account of
all requirements at once. Each such refinement step must give a reference to
the precise requirements, stated in the previous phase, which are taken into ac-
count. A preliminary completion study can be performed (no requirements are
forgotten). The refinement strategy in this phase is only temporary as it might
be reshaped in further phases.

The Rodin platform in its final form will provide a plug-in able to support
the writing of the refinement strategy and to check that it is correctly linked to
the requirement document.

Refinements and Proofs. The next phase is divided up in many sub-steps
according to the precise strategy defined in the previous phase. Each sub-step
is made of the definition of the formal refinement which is performed, together
with the corresponding proofs. It might be accompanied by some model-checking,
model testing, as well as animations activities.

A System Development Process with Event-B and the Rodin Platform 3

The three previous activities are very important to be performed at each re-
finement sub-step as they help figuring out that some requirements are impossi-
ble to achieve (or very costly), whereas some other had been simply completely
forgotten. In other words, these activities help wvalidate the requirement docu-
ment. The outcome of these activities (checked or tested properties and model
animations) can be seen and understood by the “client”, who is then able to
judge whether what has been formally modeled at a given stage indeed corre-
sponds to what he had in mind. Notice that in each refinement sub-step, it might
be found also that the previous refinement strategy was not adequate so that it
has to be modified accordingly.

The Rodin platform provides the core elements able to support this central
phase: modeling database, proof obligation generator, and provers. The sur-
rounding plug-ins (model-checker, animator, UML translator) support the other
requirement document validation activities

Decomposition. The next phase proceeds with the decomposition of the refined
model obtained at the end of the previous one. In particular, this decomposition
might separate that part of the model dealing with the external environment
from that part of the system dealing with the hardware or software implemen-
tation. The latter part might be refined in the same way as it was done on the
global model in the previous phase. This refinement/decomposition pair might
be repeated a number of times until one reaches a satisfactory architecture.

The Rodin platform in its final form will provide plug-ins to support and
prove that proposed decompositions are correct.

Code Generation. The final phase consists in performing the various hardware
or software automatic code generation.

The Rodin platform in its final form will provide plug-ins to perform these
translations.

As can be seen the incorporation of these phases within an existing devel-
opment process is certainly not an easy task. An important point to take into
account is the incorporation (and measurement) of the many proofs which have
to be performed in order to be sure that the final system will be indeed “correct
by construction”.

Challenges in Software Certification

Tom Maibaum

Software Quality Research Laboratory and Department of Computing and Software
McMaster University
1280 Main St West, Hamilton ON, Canada L8S 4K1
tom@maibaum.org

Abstract. As software has invaded more and more areas of everyday life,
software certification has emerged as a very important issue for governments,
industry and consumers. Existing certification regimes are generally focused on
the wrong entity, the development process that produces the artifact to be
certified. At best, such an approach can produce only circumstantial evidence
for the suitability of the software. For proper scientific evaluation of an artifact,
we need to address directly the attributes of the product and their acceptability
for certification. However, the product itself is clearly not enough, as we need
other artifacts, like requirements specifications, designs, test documentation,
correctness proofs, etc. We can organise these artifacts using a simple, idealised
process, in terms of which a manufacturer’s own process can be “faked”. The
attributes of this idealised process and its products can be modelled, following
the principles of Measurement Theory, using the product/process modelling
method first introduced by Kaposi.

1 Introduction

Software standards have been a concern amongst the software engineering
community for the past few decades and they remain a major focus today as a way of
introducing and standardising engineering methods into the software industry.
Software certification, or at least certification of systems including software, has
emerged as an important issue for software engineers, industry, government and
society. One has only to point to the many stories of serious disasters where software
has been identified as the main culprit and the discomfort that is being felt about this
amongst members of these communities. Several organisations, including standards
organizations and licensing authorities, have published guidance documents to
describe how software should be developed to meet standards or certification criteria.
In this paper, we focus on the issues related to software certification and refer to
standards only when relevant, though much could be said about the failures of
software related standards to meet criteria characterising rigorous engineering
standards. These licensing organisations, through their guidance documents, aim to
establish a common understanding between software producers and certifiers
(evaluators). The US Food and Drug Administration (FDA) is one of these
organisations. The Common Criteria consortium, focusing on security properties of IT
systems, is another. The FDA has published several voluminous guidance documents
concerning the validation of medical software (as has The Common Criteria

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 4-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Challenges in Software Certification 5

consortium on security properties). However, these recommendations are not
specified in an explicit and precise manner. In more detail, the FDA validation
approach, as described in the FDA guidance document [6]:

e does not describe effectively the objects that are subject to assessment,

e does not specify the measurable attributes that characterize these objects, and

e does not describe the criteria on which the FDA staff will base their decision,
in order to approve or reject the medical software and, therefore, does not
describe the measurement procedures to be used to ascertain the values of the
relevant attributes of the objects being assessed.

In fact, the focus of these documents is on the characteristics of a software
development process that is likely to produce satisfactory software. It shares this
approach and concern with almost all certification authorities’ requirements (as well
as those of standards organisations and approaches based on ‘maturity’, such as CMM
[17]). This seems to miss the point of the aim of certification, namely to ascertain
whether the product, for which a certificate is being sought, has appropriate
characteristics. Certification should be a measurement based activity, in which an
objective assessment of a product is made in terms of the values of measurable
attributes of the product, using an agreed objective function. (This objective function,
defined in terms of the measurable attributes of the product, is itself subjectively
defined; but once agreed, its use is completely objective, predictable and, perhaps
most importantly, repeatable.) After all, we are not going to be happy if an avoidable
disaster is down to a product being faulty, even though the process that produced it
was supposed to deliver a sound product. A process can never provide this guarantee,
if it does not actually examine relevant qualities of the product being certified. Even if
the process is one that gives us correctness by construction (in the sense used in
formal methods), mere correctness is not enough to convince us of the acceptability of
the product. (For example, the specification on which the correctness assertion is
based may be faulty. Or not all requirements have been taken into account. See
[15,22,23].)

Hence, our hypothesis, boldly stated, is that process oriented standards and
certification regimes will never prove satisfactory as ways of guaranteeing software
properties and providing a basis for licensing, and we have to develop a properly
scientific, product based approach to certification.

2 Process Oriented Standards and Certification

The Food and Drug Administration (FDA) is a public agency in the United States of
America concerned with the validation of medical device software or software used to
design, develop, or produce medical devices in the United States. In response to the
questions about FDA validation requirements, the FDA has expressed its current
thinking about medical software validation through guidance documents [6.7.8].
These documents target both the medical software industry and FDA staff. According
to the FDA, validation is an important activity that has to be undertaken throughout
the software development lifecycle. In other words, it occurs at the beginning, end
and even during stages of software development.

6 T. Maibaum

For example, the FDA guidance documents recommend validation to start early
while the software is being developed. In this sense, the FDA guidance document [6]
considers other activities; like planning, verification, testing, traceability,
configuration management; as important activities which all together participate in
reaching a conclusion that the software is validated.

In essence, the FDA validation approach is a generic approach. It appears in the form
of recommendations to apply some software engineering practices. These practices are
considered to be working hand by hand to support the validation process. The reason
behind FDA taking such a generic approach is due to the ‘variety of medical devices,
processes, and manufacturing facilities” [6]. In other words, the nature of validation is
significantly dependant on the medical device itself. Examples of such validation
determinant factors are [6]: availability of production environment for validating the
software, ability to simulate the production environment, availability of supportive
devices, level of risk, any prerequisite regulations/approvals re validation, etc.

The recommendations in the FDA guidance documents aim to make it possible for
the FDA to reach a conclusion that the software is validated. It applies to software [6]:

used as a component, part, or accessory of a medical device;
that is itself a medical device (e.g., blood establishment software);
used in the production of a device (e.g., programmable logic controllers in
manufacturing equipment);

e used in implementation of the device manufacturer’s quality system (e.g.,
software that records and maintains the device history record).

Having reached the conclusion that the software is validated increases the level of
confidence in the software and, accordingly, the medical device as well. In its
guidance documents, the FDA recommends certain activities to be undertaken and
certain deliverables to be prepared during the development of the medical software.
These activities and deliverables are subject to validation. For instance, validating the
Software Requirements Specification (SRS), a deliverable that contains all
requirements, aims to ensure that there are no ambiguous, incomplete, unverifiable
and technically infeasible requirements. Such validation seeks to ensure that these
requirements essentially describe the user needs, and are sufficient to achieve the
users’ objectives. In the same manner, testing is another key activity that is
thoroughly described in the guidance. On the other hand, the guidance points out
some issues that are interrelated as a result of the nature of software. Examples of
such issues are: frequent changes and their negative consequence, personnel turnover
in the sense that software maintainers might have not be involved in the original
development. Moreover, the FDA guidance stresses the importance of having well-
defined procedures to handle any software change introduced. Validation in this
context addresses the newly added software as well as already existing software. In
other words, in addition to validating the newly added pieces (components) of code,
the effect of these new pieces on the existing ones has to be checked. Such a check
ensures that the new components have no negative impact on the existing ones.
Furthermore, the guidance highlights the importance of having independence in the
review process, in the sense that the personnel who participate in validating the
software are not the ones who developed it.

These are mainly the kinds of issues which the FDA guidance documents address
with regard to software validation. In terms of software development, the FDA

