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Preface

Formal methods for the development of computer systems have been extensively
researched and studied. A range of semantic theories, specification languages,
design techniques, and verification methods and tools have been developed and
applied to the construction of programs of moderate size that are used in critical
applications. The challenge now is to scale up formal methods and integrate
them into engineering development processes for the correct construction and
maintenance of computer systems. This requires us to improve the state of the
art by researching the integration of methods and their theories, and merging
them into industrial engineering practice, including new and emerging practice.

ICFEM, the International Conference on Formal Engineering Methods, aims
to bring together those interested in the application of formal engineering meth-
ods to computer systems. Researchers and practitioners, from industry, academia,
and government, are encouraged to attend and to help advance the state of the
art. The conference particularly encourages research that aims at a combination
of conceptual and methodological aspects with their formal foundation and tool
support, and work that has been incorporated into the production of real systems.

This volume contains the papers presented at ICFEM 2007 held November
14-15, 2007 in Florida Atlantic University, Boca Raton, Florida. There were 38
submissions. Each submission was reviewed by four Program Committee mem-
bers. The committee decided to accept 19 papers based on originality, technical
soundness, presentation, and relevance to formal engineering and verification
methods. We thank the Program Committee members and the other referees for
their effort and professional work in the reviewing and selecting process. The pro-
gram also includes contributions from the two keynote speakers: Jean-Raymond
Abrial and Tom Maibaum. Professor Abrial gave a talk on a system development
process with Event-B and the Rodin Platform while Professor Maibaum gave a
talk on the challenges of software certification.

A workshop on the verifiable file store mini-challenge was held on November
13,2007 co-located with ICFEM 2007. This workshop was organized by Jim Wood-
cock and Leo Freitas as part of the Grand Challenge in Verified Software.

ICFEM 2007 was jointly organized and sponsored by Florida Atlantic Uni-
versity, Loyola College in Maryland, and the University of Southampton and
we would like to thank all those who helped in the organization. We used the
Easychair system to manage the submissions, refereeing, paper selection, and
proceedings production. We would like to thank the Easychair team for a very
powerful tool.

August 2007 Michael Butler
Mike Hinchey
Maria M. Larrondo-Petrie
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A System Development Process with Event-B
and the Rodin Platform

J.-R. Abrial

jabrial@inf.ethz.ch

Event-B is the name of a mathematical (set-theoretic) approach used to develop
complex discrete systems, be they computerized or not.

The Rodin platform is an open tool set devoted to supporting the devel-
opment of such systems. It contains a modeling database surrounded by various
plug-ins: static checker, proof obligation generator, provers, model-checkers, an-
imators, UML transformers, requirement document handler, etc. The database
itself contains the various modeling elements needed to construct discrete tran-
sition system models: essentially variables, invariants, and transitions.

Formal Development. With the help of this palette, users can develop math-
ematical models and refine them. In doing so, they are able to reason, modify,
and decompose their models before starting the effective implementation of the
corresponding systems. Such an approach is well known and widely used in many
mature engineering disciplines where reasoning on a abstract representation of
the future system is routine. Just think of the usage of blueprints made by
architects within a building construction process.

Technology Transfer. One of the main difficulties in transferring this technol-
ogy is not that of its mastering by industry engineers (a common opinion shared
by many analysts). It is rather, we think, the incorporation of this technology
within the industrial development process. We believe that the above argument,
about the difficulty of mastering this technology is, in fact, a way of hiding (con-
sciously or not) the one concerning the incorporation within the development
process.

This Presentation. The aim of this presentation is to show that the Event-B
technology can be put into practice. For this, we must follow a well defined de-
velopment process. That process is precisely the one which has to be transferred
to industry. The Rodin platform, in its final form, will be the supporting tool
for achieving this.

Before describing the Event-B development process however, we make precise
what we mean by an industrial development process in general terms.

Industrial Development Processes are now common practice among im-
portant critical system manufacturers (train signalling system companies, avionic
and space companies, automotive manufacturers, power system designers, de-
fense sector industries, etc.). A system development process contains the defini-
tion of the various milestones encountered in the system construction together
with the precise definition of what is to be done between these milestones, by

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 1-3, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 J.-R. Abrial

whom, and within which delays. It also contains different ways of re-iterating on
these milestones in case the process encounters some difficulties.

Usually, industrial managers are very reluctant to modify their development
processes because: (1) it is part of their company culture and image, (2) it is
difficult to define and make precise, and (3) it is even more difficult to have them
accepted and followed by working engineers.

In order to know how to modify the development process due to the introduc-
tion of some formal method technology (Event-B and Rodin) in the construction
of complex systems, it is clearly very important to understand that this process
is aimed at obtaining systems which can be considered to be correct by construc-
tion. This presentation does not pretend to solve all related problems nor to give
the key to a successful incorporation of formal methods in industry: it aims at
providing the beginning of a systematic way of envisaging these matters.

Let us now briefly present the Event-B development process and show how
the Rodin platform supports it.

Requirement Document. After the initial feasibility studies phase which is
not subsequently modified, the second phase of the process is the writing of
the requirement document. It must be pointed out that most of the time such
documents are very poor: quite often, they just contain the pseudo-solution of
a problem which, to begin with, is not stated. Our opinion is that it is very
risky to proceed further with such poor documents. More precisely, we think
that it is necessary to rewrite them very carefully in a systematic fashion. Each
requirement must be stated by means of a short English statement which is well
recognizable and clearly labelled according to some taxonomy to be defined for
each project.

The Rodin platform in its final form will provide a plug-in able to support
the gradual construction of such structured requirement documents, to retrieve
them, and to form the initial basis of the necessary traceability.

Refinement Strategy. The next phase consists in defining a temporary refine-
ment strategy. It contains the successive steps of the refined models construction.
Clearly, it is out of the question to construct a unique model taking account of
all requirements at once. Each such refinement step must give a reference to
the precise requirements, stated in the previous phase, which are taken into ac-
count. A preliminary completion study can be performed (no requirements are
forgotten). The refinement strategy in this phase is only temporary as it might
be reshaped in further phases.

The Rodin platform in its final form will provide a plug-in able to support
the writing of the refinement strategy and to check that it is correctly linked to
the requirement document.

Refinements and Proofs. The next phase is divided up in many sub-steps
according to the precise strategy defined in the previous phase. Each sub-step
is made of the definition of the formal refinement which is performed, together
with the corresponding proofs. It might be accompanied by some model-checking,
model testing, as well as animations activities.
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The three previous activities are very important to be performed at each re-
finement sub-step as they help figuring out that some requirements are impossi-
ble to achieve (or very costly), whereas some other had been simply completely
forgotten. In other words, these activities help wvalidate the requirement docu-
ment. The outcome of these activities (checked or tested properties and model
animations) can be seen and understood by the “client”, who is then able to
judge whether what has been formally modeled at a given stage indeed corre-
sponds to what he had in mind. Notice that in each refinement sub-step, it might
be found also that the previous refinement strategy was not adequate so that it
has to be modified accordingly.

The Rodin platform provides the core elements able to support this central
phase: modeling database, proof obligation generator, and provers. The sur-
rounding plug-ins (model-checker, animator, UML translator) support the other
requirement document validation activities

Decomposition. The next phase proceeds with the decomposition of the refined
model obtained at the end of the previous one. In particular, this decomposition
might separate that part of the model dealing with the external environment
from that part of the system dealing with the hardware or software implemen-
tation. The latter part might be refined in the same way as it was done on the
global model in the previous phase. This refinement/decomposition pair might
be repeated a number of times until one reaches a satisfactory architecture.

The Rodin platform in its final form will provide plug-ins to support and
prove that proposed decompositions are correct.

Code Generation. The final phase consists in performing the various hardware
or software automatic code generation.

The Rodin platform in its final form will provide plug-ins to perform these
translations.

As can be seen the incorporation of these phases within an existing devel-
opment process is certainly not an easy task. An important point to take into
account is the incorporation (and measurement) of the many proofs which have
to be performed in order to be sure that the final system will be indeed “correct
by construction”.
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Abstract. As software has invaded more and more areas of everyday life,
software certification has emerged as a very important issue for governments,
industry and consumers. Existing certification regimes are generally focused on
the wrong entity, the development process that produces the artifact to be
certified. At best, such an approach can produce only circumstantial evidence
for the suitability of the software. For proper scientific evaluation of an artifact,
we need to address directly the attributes of the product and their acceptability
for certification. However, the product itself is clearly not enough, as we need
other artifacts, like requirements specifications, designs, test documentation,
correctness proofs, etc. We can organise these artifacts using a simple, idealised
process, in terms of which a manufacturer’s own process can be “faked”. The
attributes of this idealised process and its products can be modelled, following
the principles of Measurement Theory, using the product/process modelling
method first introduced by Kaposi.

1 Introduction

Software standards have been a concern amongst the software engineering
community for the past few decades and they remain a major focus today as a way of
introducing and standardising engineering methods into the software industry.
Software certification, or at least certification of systems including software, has
emerged as an important issue for software engineers, industry, government and
society. One has only to point to the many stories of serious disasters where software
has been identified as the main culprit and the discomfort that is being felt about this
amongst members of these communities. Several organisations, including standards
organizations and licensing authorities, have published guidance documents to
describe how software should be developed to meet standards or certification criteria.
In this paper, we focus on the issues related to software certification and refer to
standards only when relevant, though much could be said about the failures of
software related standards to meet criteria characterising rigorous engineering
standards. These licensing organisations, through their guidance documents, aim to
establish a common understanding between software producers and certifiers
(evaluators). The US Food and Drug Administration (FDA) is one of these
organisations. The Common Criteria consortium, focusing on security properties of IT
systems, is another. The FDA has published several voluminous guidance documents
concerning the validation of medical software (as has The Common Criteria

M. Butler, M. Hinchey, M.M. Larrondo-Petrie (Eds.): ICFEM 2007, LNCS 4789, pp. 4-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Challenges in Software Certification 5

consortium on security properties). However, these recommendations are not
specified in an explicit and precise manner. In more detail, the FDA validation
approach, as described in the FDA guidance document [6]:

e does not describe effectively the objects that are subject to assessment,

e does not specify the measurable attributes that characterize these objects, and

e does not describe the criteria on which the FDA staff will base their decision,
in order to approve or reject the medical software and, therefore, does not
describe the measurement procedures to be used to ascertain the values of the
relevant attributes of the objects being assessed.

In fact, the focus of these documents is on the characteristics of a software
development process that is likely to produce satisfactory software. It shares this
approach and concern with almost all certification authorities’ requirements (as well
as those of standards organisations and approaches based on ‘maturity’, such as CMM
[17]). This seems to miss the point of the aim of certification, namely to ascertain
whether the product, for which a certificate is being sought, has appropriate
characteristics. Certification should be a measurement based activity, in which an
objective assessment of a product is made in terms of the values of measurable
attributes of the product, using an agreed objective function. (This objective function,
defined in terms of the measurable attributes of the product, is itself subjectively
defined; but once agreed, its use is completely objective, predictable and, perhaps
most importantly, repeatable.) After all, we are not going to be happy if an avoidable
disaster is down to a product being faulty, even though the process that produced it
was supposed to deliver a sound product. A process can never provide this guarantee,
if it does not actually examine relevant qualities of the product being certified. Even if
the process is one that gives us correctness by construction (in the sense used in
formal methods), mere correctness is not enough to convince us of the acceptability of
the product. (For example, the specification on which the correctness assertion is
based may be faulty. Or not all requirements have been taken into account. See
[15,22,23].)

Hence, our hypothesis, boldly stated, is that process oriented standards and
certification regimes will never prove satisfactory as ways of guaranteeing software
properties and providing a basis for licensing, and we have to develop a properly
scientific, product based approach to certification.

2 Process Oriented Standards and Certification

The Food and Drug Administration (FDA) is a public agency in the United States of
America concerned with the validation of medical device software or software used to
design, develop, or produce medical devices in the United States. In response to the
questions about FDA validation requirements, the FDA has expressed its current
thinking about medical software validation through guidance documents [6.7.8].
These documents target both the medical software industry and FDA staff. According
to the FDA, validation is an important activity that has to be undertaken throughout
the software development lifecycle. In other words, it occurs at the beginning, end
and even during stages of software development.
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For example, the FDA guidance documents recommend validation to start early
while the software is being developed. In this sense, the FDA guidance document [6]
considers other activities; like planning, verification, testing, traceability,
configuration management; as important activities which all together participate in
reaching a conclusion that the software is validated.

In essence, the FDA validation approach is a generic approach. It appears in the form
of recommendations to apply some software engineering practices. These practices are
considered to be working hand by hand to support the validation process. The reason
behind FDA taking such a generic approach is due to the ‘variety of medical devices,
processes, and manufacturing facilities” [6]. In other words, the nature of validation is
significantly dependant on the medical device itself. Examples of such validation
determinant factors are [6]: availability of production environment for validating the
software, ability to simulate the production environment, availability of supportive
devices, level of risk, any prerequisite regulations/approvals re validation, etc.

The recommendations in the FDA guidance documents aim to make it possible for
the FDA to reach a conclusion that the software is validated. It applies to software [6]:

used as a component, part, or accessory of a medical device;
that is itself a medical device (e.g., blood establishment software);
used in the production of a device (e.g., programmable logic controllers in
manufacturing equipment);

e used in implementation of the device manufacturer’s quality system (e.g.,
software that records and maintains the device history record).

Having reached the conclusion that the software is validated increases the level of
confidence in the software and, accordingly, the medical device as well. In its
guidance documents, the FDA recommends certain activities to be undertaken and
certain deliverables to be prepared during the development of the medical software.
These activities and deliverables are subject to validation. For instance, validating the
Software Requirements Specification (SRS), a deliverable that contains all
requirements, aims to ensure that there are no ambiguous, incomplete, unverifiable
and technically infeasible requirements. Such validation seeks to ensure that these
requirements essentially describe the user needs, and are sufficient to achieve the
users’ objectives. In the same manner, testing is another key activity that is
thoroughly described in the guidance. On the other hand, the guidance points out
some issues that are interrelated as a result of the nature of software. Examples of
such issues are: frequent changes and their negative consequence, personnel turnover
in the sense that software maintainers might have not be involved in the original
development. Moreover, the FDA guidance stresses the importance of having well-
defined procedures to handle any software change introduced. Validation in this
context addresses the newly added software as well as already existing software. In
other words, in addition to validating the newly added pieces (components) of code,
the effect of these new pieces on the existing ones has to be checked. Such a check
ensures that the new components have no negative impact on the existing ones.
Furthermore, the guidance highlights the importance of having independence in the
review process, in the sense that the personnel who participate in validating the
software are not the ones who developed it.

These are mainly the kinds of issues which the FDA guidance documents address
with regard to software validation. In terms of software development, the FDA



