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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally. and at
ahigh level. The texts should be reasonably self-contained and rounded off. Thus
they may. and often will. present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation. examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals. usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag.
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript. but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length. a bibliography. and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction. perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Introduction.

Let f: X — Y be a continuous map of locally compact spaces. Let Sh(X),
Sh(Y) denote the abelian categories of sheaves on X and Y, and D(X), D(Y")
denote the corresponding derived categories (maybe bounded D = D% or bounded

below D = D% if necessary). It is well known that there exist functors

f*, fo. f's h. D, Hom, @
between the categories D(X') and D(Y"), which satisfy certain identities.

Now assume that X, Y are in addition G-spaces for a topological group G.
and that f is a G-map. Instead of sheaves let us consider the equivariant sheaves
Sha(X), Shg(Y). One wants to have triangulated categories Dg(X), Dg(Y) -
“derived categories of equivariant sheaves™ - together with all the above functors.

More precisely, there should exist the forgetful functor
For:D¢g — D,

so that the functors in categories D¢; are compatible with the usual ones in categories
D under this forgetful functor. Simple examples show that the derived category
D(Sh¢) of the abelian category Sh¢ cannot be taken for D¢ (unless the group G is
discrete). The main purpose of this work is to introduce the suitable category D¢
and to define the corresponding functors.

Actually, we get more structure. Namely, let ¢ : H — G be a homomorphism
of groups, X be an H-space, Y be a G-space, and f: X — Y be a map compatible
with the homomorphism ¢. In this situation we have functors of inverse and direct
image

Q% : Dg(Y) —» Du(X),
Qsx : Dy(X) — Da(Y).

The direct image functor @y, is probably the most interesting one. It does not in
general commute with the forgetful functor.

For a connected Lie group G we give an algebraic description of the triangulated
category D¢(pt) in terms of DG-modules over a natural DG-algebra Ag. This
description is our main tool in applications of the theory. As an example of an
application we "compute” the equivariant intersection cohomology (with compact
supports) of toric varieties.

Let us explain briefly the structure of the text. Part I is devoted mainly to the
definition of the category Dg(X) and of various functors. In part II we use DG-
modules to study the category Dg(pt) and discuss equivariant cohomology. Finally,
in the last part III the general theory is applied to toric varieties, which yields some
applications to combinatorics.

This text summarizes the work which started some five years ago. During this

period the authors were partially supported by the NSF.



Part I. Derived category Dg(X) and functors.

0. Some preliminaries.

0.1. Let G be a topological group and X be a topological space. We say that X is
a G-space if G acts continously on X. This means that the multiplication map

m: GxX — X, (g,z)— gz

1s continuous.
Let X,Y be G-spaces. A continuous map f : X — Y is called a G-map if it
commutes with the action of G on X and Y.
More generally, let ¢ : H — G be a homomorphism of topological groups. Let
X be an H-space and Y be a G-space and f : X — Y be a continuous map. We
call f a ¢-map if
f(hx) = ¢(h)f(x)

forallz € X, he H.
Let X be a G-space. We denote by X := G\ X the quotient space (the space
of G-orbits) of X and by ¢ : X — X the natural projection. By definition ¢ is a

continuous and open map.

0.2. Let X be a G-space. Consider the diagram of spaces

do do
GxGxXAoGxX = X
day Ll
where
do(g1y---1Gnsx) = (92,1 Gn, 9y ')
di(glv"'vgnvf) = (glv"‘vgigl+11~--vgn7z)v 1 SZ_<_T7,—1

dalgas - - 39, 2) = (Giss s Gn—1;2Z)
so(x) = (e,x)

A G-equivariant sheaf on X is a pair (F,6), where F € Sh(X) and 6 is an
isomorphism

0:diF ~ djF,
satisfying the cocycle condition
dy6ody6 =di0, s50 =1dp.

We will always assume that F is an abelian sheaf or, more generally, a sheaf of
R - modules for some fixed ring R.
A morphism of equivariant sheaves is a morphism of sheaves FF — F' which

commutes with 6.



Equivariant sheaves form an abelian category which we denote by Sha(X).

Examples.
1. Shg(G) ~ R — mod.
2. If G is a connected group, then Shg(pt) ~ R — mod.

Remark. In case G is a discrete group, a G-equivariant sheaf is simply a sheaf F
together with an action of G which is compatible with its action on X (cf. [Groth]).

0.3. Consider the quotient map ¢ : X — X. Let H € Sh(X). Then ¢*(H) € Sh(X)
is naturally a G-equivariant sheaf. This defines a functor

q* : Sh(X) — Sha(X).

Let F € Shg(X). Then the direct image ¢.F € Sh(X) has a natural action of
G. Denote by ¢“F = (¢.F)% the subsheaf of G-invariants of ¢,F. This defines a

functor

4% : Shg(X) — Sh(X).

Definition. A G-space X is free if
a) the stabilizer G, = {g € G|gz = ¢} of every point ¢ € X is trivial, and
b) the quotient map ¢ : X — X is a locally trivial fibration with fibre G.

A free G-space X is sometimes called a principal G-homogeneous space over
X.

The following lemma is well known.

Lemma. Let X be a free G-space. Then the functor ¢* : Sh(X) — Shg(X) is an
equivalence of categories. The inverse functor is ¢¢ : Sha(X) — Sh(X).

0.4. The last lemma shows that in case of a free G-space we may identify the
equivariant category Shg(X) with the sheaves on the quotient Sh(X). Hence in
this case one may define the derived category Dg(X) of equivariant sheaves on
X to be the derived category of the abelian category Shg(X), 1. e.

Dg(X) := D(Shg(X)) = D(Sh(X)).

If X is not a free G-space, the category D(Shg(X)) does not make much sense
in general. (However, it is still the right object in case G is a discrete group (see
section 8 below)).

It turns out that in order to give a good definition of Dg(X ) one has first of
all to resolve the G-space X, i.e. replace X by a free G-space, and then to use the



above naive construction of D¢ for a free space. This allows us to define all usual

functors in D¢ with all usual properties.
It is possible to give a more abstract definition of D¢ using simplicial topological
spaces (see Appendix B). However, we do not know how to define functors using

this definition and hence never use it.



1. Review of sheaves and functors.

This section is a review of the usual sheaf theory on locally compact spaces
and on pseudomanifolds. The subsections on the smooth base change (1.8) and on

acyclic maps (1.9) will be especially important to us. We will mostly follow [Bol].

1.1. Let X be a topological space. We fix a commutative ring R with 1 and denote
by Cx the constant sheaf of rings on X with stalk R. We denote by Sh(X) the
abelian category of Cy-modules (i.e., sheaves of R-modules) on X.

Let f: X — Y be a continuous map of topological spaces. We denote by
f*: Sh(Y) — Sh(X) the inverse image functor and by f. : Sh(X) — Sh(Y) the
direct image functor. The functor f* is exact and f*(Cy) = Cx. The functor f, is
left exact and we denote by R*f, its right derived functors.

Our main object of study is the category D*(X) - the bounded derived category
of Sh(X). We also consider the bounded below derived category Dt (X).

A continuous map f : X — Y defines functors
f*:DYY)— D¥X) and Rf,:DY(X)— DT(Y).

Remark. Since we mostly work with derived categories, we usually omit the sign

L
of the derived functor and write f, instead of Rf,,® instead of ® and so on.

1.2. Truncated derived categories (see [BBD])

For any integer a we denote by D<%(X) the full subcategory of objects A €
D*(X) which satisfy H'(A) = 0 for ¢ > a. The natural imbedding DS*(X) —
D*(X) has a right adjoint functor 7<, : D(X)* — D=%(X), which is called the
truncation functor.

Similarly we define the subcategory D2%(X) C D*(X) and the truncation
functor 7>, : DH(X) — D2(X).

Given a segment I = [a,b] C Z we denote by D!(X) the full subcategory
D24(X)n DY X) c D¥X).

Subcategories DZ¢(X), DSY(X) and D!(X) are closed under extensions (i.e.
if in an exact triangle A — B — C objects A and C lie in a subcategory, then B
also lies in the subcategory). All these subcategories are preserved by inverse image
functors.

If J C I, we have a natural fully faithful functor D’(X) — D!(X). The
category D*(X) can be reconstructed from the system of finite categories D/(X),

namely

DY X) = li;nD’(X).

Since all functors D’(X) — D!(X) are fully faithful, there are no difficulties in

defining this limit.



In the case when I = [0,0] the subcategory D!(X) is naturally equivalent to
Sh(X). This is the heart of the category Db(X) with respect to t-structure defined
by truncation functors 7 (see [BBD]).

1.3. We assume that the coefficient ring R is noetherian of finite homological dimen-
sion (in fact we are mostly interested in the case when R is a field, usually of char-
acteristic 0). Then we can define functors of tensor product ® : D*(X) x Db(X) —
D¥(X) and Hom : D*(X)® x D¥(X) — D*(X) (see [Bol], V.6.2 and V.7.9 ).

1.4. For locally compact spaces one has additional functors fi, f' and the Verdier
duality functor D. In order to define these functors we will work only with a special
class of topological spaces. Namely, we say that a topological space X is nice if it
is Hausdorff and locally homeomorphic to a pseudomanifold of dimension bounded
by d = d(X) (see [Bol]).

Every nice topological space is locally compact, locally completely paracompact
and has finite cohomological dimension (see [Bol]). In particular every object in
D*(X) can be realized by a bounded complex of injective sheaves. In fact we could
consider instead of nice spaces the category of topological spaces satisfying these
properties.

Let f: X — Y be a continuous map of nice topological spaces. Then following
[Bol] we define functors f., fi : D*(X) — DY), and f*, f': D¥(Y) — D*(X).

Functors described above are connected by some natural morphisms. We will
describe some of them; one can find a pretty complete list in [GoMa]. These proper-
ties are important for us since we would like them to hold in the equivariant situation
as well.

We denote by T the category of topological spaces.

In the rest of this section 1 (except for 1.9) we assume that all spaces are nice.

1.4.1. We have the following natural functorial isomorphisms.
Hom(A® B,C)~ Hom(A,Hom(B,(C)).
f(A® B) ~ f*(A) ® f*(B).
1.4.2. Composition. Given continuous maps f : X —» Y and g : Y — Z there are

natural isomorphisms of functors (fg)* = ¢*-f*,(fg)' = ¢" ', (fg9)s« = fe-gs,(fg) =
fi g

1.4.3. Adjoint functors. The functor f* is naturally left adjoint to f, and the
1

functor fi is naturally left adjoint to f



1.4.4. There is a canonical morphism of functors fi — f, which is an isomorphism

when f is proper.

1.4.5. Exact triangle of an open subset. Let U C X be an open subset, Y =
X\U,::Y — X and j : U - X natural inclusions. Then for every F € D% X)

adjunction morphisms give exact triangles
wi'F - F — j,j*F

and
jij'F - F = i,4*F.

In this case ¢y = i, and j, are extensions by zero, j* = j' is the restriction to an

open subset, 417’ is the derived functor of sections with support in Y.

1.4.6. Base change. In applications we usually fix a topological space S (a base)
and consider the category 7 /S of topological spaces over the base S. An object of
this category is a pair X € 7 and a map X — S.

Every continuous map v : T — S defines a base change ~: 7/S — T /T by
XX =XxsT.

Given a space X/S we will use the projection v : X — X to define a base
change functor v* : D*(X) — D"(’Z) This functor commutes with functors f* and

fi, i.e. there are natural functorial isomorphisms
v f* = f*v* and v*'fi = fiv*.
Similarly, there are natural isomorphisms

V=Y and Vf. = fudh

1.4.7. Properties of the functor f'.

The object Dy := f'(Cy) € D¥(X) is called the dualizing object of f.
1. We say that the map f is locally fibered if for every point z € X there exist
neighbourhoods U of z in X and V of y = f(z) in Y such that themap f: X - Y
is homeomorphic to a projection F x V — V.

Assume that f is locally fibered. Then for every A € D(Y') there is a natural
isomorphism

fi(A) ~ f*(A)® f(Cy)

(see [Ve2]).
2. Let f: X — Y be a closed embedding. We say that f is relatively smooth if
there exists an open neighbourhood U of X in Y, such that U = X x R? and f is the



embedding of the zero section f(z) = (z,0). Let p: U — X be the projection. An
object F € D*(Y') is called smooth relative to X if Fy; = p*F' for some F' € Db(X).

Assume f : X — Y is a relatively smooth embedding. Then Dy € D¥(X) is
invertible (see 1.5 below). Let F' € D¥(Y') be smooth relative to X. Then we have

a natural isomorphism in D®(X)
f'F=f*F®Dy.

In particular the dualizing object Dy (see 1.6.1 below) of Y is smooth relative

to X and we have
Dx = f'Dy = f*Dy ® Dy.

3. Let
Zy s Z
LfF o Lf
{p}i» w

be a pullback square, where f : Z — W is a locally trivial fibration, and j : Z, — Z

is the inclusion of the fiber. Then we have a canonical isomorphism of functors

1.5. Twist. An object L € D*(X) is called invertible if it is locally isomorphic to
Cx[n] - the constant sheaf C'x placed in degree —n. Then for L™! := Hom(L,Cx)
the natural morphism L @ L~! — C'x is an isomorphism. Every invertible object L
defines a twist functor L : D*(X) — D*(X) by A+ L ® A. If L, M are invertible
objects, then N = L ® M 1is also invertible and the twist by N is isomorphic to the
product of twists by L and M. In particular, the twist functor by L has an inverse
given by the twist by L™1.

The twist is compatible with all basic functors. For example L @ (4 @ B) ~
(Lo A)®@ Band L© Hom(A,B) = Hom(A,L @ B) = Hom(L™! ® A, B).

Fix a base S and an invertible object L in D?(S). It defines a family of twist
functors L in categories D*(X) for all spaces X/S; namely if p : X — S and
A € D*(X), then L(A) = p*(L) ® A. This twist is compatible with all our functors,
i.e., for every continuous map f : X — Y over the base S there are canonical

isomorphisms of functors
ffL=Lf fL=Lf, fiL=Lf., fiL=Lf.

These isomorphisms are compatible with isomorphisms in 1.4.



1.6. Verdier duality

1.6.1. Let us fix an invertible object D, in D*(pt) and call it a dualizing object over
the point. For any nice topological space X we define its dualizing object Dx €
D*(X) to be p'(Dpe), where p: X — pt. If X is a smooth manifold of dimension d
the dualizing object Dy is invertible (1.5) and locally isomorphic to Cx[d]. Using
this dualizing object we define the Verdier duality functor D : D*(X) — D*(X) by
D(A) = Hom(A,Dy).

For any object A € D*(X) we have a canonical functorial biduality morphism
A — D(D(A)).

1.6.2. Theorem (Verdier duality). For any continuous map f there are canonical

functorial isomorphisms

Df = f.D and f'D=Df*.

1.6.3. Different choices of the object D, give rise to different duality functors,
which differ by a twist. We will choose the standard normalization D,; = Cp¢ (see
[(Bol]).

Remark. This standard normalization is not always natural. For example, if
R = k(M) is an algebra of functions on a nonsingular algebraic variety M, the

natural choice for D, is a dualizing module for M, equal to Qp [dimM].

1.7. Smooth maps. Let f : X — Y be a continuous map of topological spaces.
We say that f is smooth of relative dimension d if for every point ¢ € X there
exist neighborhoods U of x in X and V of f(z) in Y such that the restricted map
f:U — V is homeomorphic to the projection V x R4 — V.

For a smooth map f the dualizing object Dy € D*(X) is invertible and is locally
isomorphic to C'x [d].

1.8. Smooth base change. Consider a smooth base change v : T — S. If X isa
nice topological space (see 1.4.), then the space X = X x ¢T is also nice. The crucial
observation, which makes our approach possible, is that in this situation the base

change functor v* : D¥(X) — D”(.‘:’) essentially commutes with all other functors.

Theorem (Smooth base change).

(i) We have canonical functorial isomorphisms

v*(A® B) = v*(A) ®v*(B),
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v*(Hom(A,B)) = Hom(v*(A),v*(B)).

(1) Let f: X — Y be any map of spaces over S. Let us denote by the same symbol
the corresponding map X — Y. Then for A € D*(X), B € DY) we have canonical
1somorphisms
v f(A) > fur*(A), v*fi(A) = fiv*(A)
v f*(B) = f*v*(B), v'f(B)=x fv*(B).
These 1somorphisms are compatible with 1somorphisms in 1.4.

(111) The Verdier duality commutes with v* up to a twist by the (invertible) dualizing
object D, of v: T — S. Namely

D(v*(A)) = D, @ v*(D(A)).

This 1isomorphism 18 compatible with the identities in 1.6. For ezample, if we
identify v*(DD(A)) ~ DD(v*A) using the last 1somorphism then v* preserves the
biduality morphism (1.6.1).

We will discuss this theorem in Appendix A.

1.9. Acyclic maps. Fix n > 0. In this section we consider general topological

spaces. The proofs are given in Appendix A below.

1.9.1. Definition. We say that a continuous map f : X — Y is n-acyclic if it
satisfies the following conditions:

a) For any sheaf B € Sh(Y') the adjunction morphism B — R’ f, f*(B) is an
isomorphism and R f, f*(B) =0 for: =1,2,...,n

b) For any base change Y — Y the induced map f: X = X xy Y — Y satisfies
the property a).

We say that f is co-acyclic if it is n-acyclic for all n.

It is convenient to rewrite the condition a) in terms of derived categories.
Namely, consider the functor ¢ = 7<, - fo : D*(X) — D®Y). Then the ad-
junction morphisms B — f,f*(B) and f*f.(A) — A define functorial morphisms
T<n(B) = of*(B) and f*o(A) — 7<n(4).

The condition a) can be now written as

a') For any sheaf B € Sh(Y) C D%Y) the natural morphism B — o f*(B) is

an isomorphism.

1.9.2. It turns out that for an n-acyclic map f : X — Y large pieces of the category
DY) can be realized as full subcategories in D®(X). Namely, let us say that an
object A € D' (X) comes fromY if it is isomorphic to an object of the form f*(B)
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for some B € D*(Y). We denote by D*(X|Y) C D¥(X) the full subcategory of
objects which come from Y.

Let us fix a segment I = [a,b] C Z and consider the truncated subcategory
D!(X|Y) = D!(X)n D*(X|Y).
Proposition (see Appendix A). Let f : X — Y be an n-acyclic map, where n >
|[I| = b— a (resp oo-acyclic). Then
(i) The functor f* : D'(Y) — DI(X|Y) (resp. f*: DY(Y) — DT(X|Y)) is an
equivalence of categories. The inverse functor 1s given by 0 = T<p 0 fy : DY X) —
DY) (resp. f.: DY (X)— D*H(Y)).
(11) The functor f* gives a bijection of the sets of equivalence classes of ezact tri-
angles in D'(Y) and D!(X|Y) (resp. in DY (Y) and D (X|Y)). In other words a
diagram (T) in D'(Y) is an ezact triangle iff the diagram f*(T) in D!(X) is an
ezact triangle.
(i11) The subcategory DY(X|Y) C D X) (resp. DH(X|Y) C D*(X)) is closed

under eztensions and taking direct summands.

1.9.3. The following lemma gives a criterion, when an object A € D!(X) comes
from Y.

Lemma. Suppose we have a base change q: Y - Y in which q 13 eptmorphzc and
admits local sections. Set X = X xy Y and consider the induced map f X Y.
Then

(1) The induced map f~ 18 n-acyclic if and only of f 13 n-acyclic.

(i) Suppose f, f are n-acyclic. Let A € D'(X), where |I| < n. Then A comes from
Y if and only if 1ts base change A= q*(A) € Dl()?) comes from Y.

(1ii) The above assertions hold if we replace "n-acyclic” by "oco-acyclic” and D! by
Dt

1.9.4. The following criterion, which is a version of the Vietoris-Begle theorem,
gives us a tool for constructing n-acyclic maps.

We say that a topological space M is n-acyclic, if it is non-empty, connected,
locally connected (i.e. every point has a fundamental system of connected neigh-
borhoods) and for any R-module A4 we have H'(M,A) ~ A and H'(M, A) = 0 for
1=1,2,...,n

Criterion. Let f : X — Y be a locally fibered map (1.4.7). Suppose that all fibers

of f are n-acyclic. Then f i3 n-acyclic.

1.10. Constructible complexes.
Suppose that X is a pseudomanifold with a given stratification S (see [Bol] I.1).
We denote by D8(X;S) the full subcategory of S-constructible complexes in D?(X),



