PASCAL

at Work and Play

An Introduction to Computer
Programmingin Pascal

RICHARD S FORSYTH

Pascal
at Work and Play

AN INTRODUCTION TO
COMPUTER PROGRAMMING IN PASCAL

RICHARD S. FORSYTH
Polytechnic of North London

LONDON NEW YORK
CHAPMAN AND HALL

First published 1982 by

Chapman and Hall Ltd

11 New Fetter Lane, London EC4P 4EE
Published in the USA by

Chapman and Hall

733 Third Avenue, New York NY 10017

© 1982 Richard Forsyth

Printed in Great Britain
at the University Press, Cambridge

ISBN 0 412 23370 3 (cased)
ISBN 0 412 23380 0 (Science Paperback)

This title is available in both hardbound and paperback editions. The
paperback edition is sold subject to the condition that it shall not, by way
of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated
without the publisher’s prior consent in any form of binding or cover other
than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical or other means, now
known or hereafter invented, including photocopying and recording, or in

any information storage and retrieval system, without permission in writing

from the publisher.

Library of Congress Cataloging in Publication Data

Forsyth, Richard S.
Pascal at work and play.

Bibliography: p.
Includes index.
1. PASCAL (Computer program language)

I. Title.
QA76.73.P2F67 1982 001.64'24 82-4515
ISBN 0-412-23370-3 AACR2

ISBN 0-412-23380—0 (Science paperbacks: pbk.)

British Library Cataloguing in Publication Data

Forsyth, Richard S.
Pascal at work and play.
1. PASCAL (Computer program language)
I. Title
001.64'24 QA76.73.P2

ISBN 0-412-23370-3
ISBN 0—-412-23380—-0 Pbk

Pascal
at Work and Play

Preface

This is both a first and a second level course in Pascal. It starts at an elementary
level and works up to a point where problems of realistic complexity can be tackled.
It is aimed at two audiences: on the one hand the computer professional who has a
good knowledge of Cobol or Fortran but needs convincing that Pascal is worth
learning, and on the other hand the amateur computer enthusiast who may have a
smattering of Basic or may be an absolute beginner.

Its approach is based on two principles that are not always widely recognized.

The first is that computing is no longer a specialist subject. In the early days
of computing a priesthood arose whose function was to minister to those awesome,
and awesomely expensive, machines. Just as in the ancient world, when illiteracy
was rife, the scribes formed a priestly caste with special status, so the programmers
of yesteryear were regarded with reverence. But times are changing: mass computer-
literacy is on its way. We find already that when a computer enters a classroom it
is not long before the pupils are explaining the finer points of its use to their
teacher — for children seem to have greater programming aptitude than adults.

This book, it is hoped, is part of that process of education by which the computer
is brought down to earth; and therefore it attempts to divest computing of the
mystique (and deliberate mystification) that still tends to surround the subject.

The other principle is that the second best way to achieve competence as a
programmer is to read non-trivial programs and see how they work. (The best way
is of course to write programs, and plenty of them.) So a large proportion of this
book is taken up by full descriptions and listings of four good-sized programs that
are far removed from the toy examples sometimes shown in programming textbooks.
This aspect, based on the fact that people learn by example, is too often neglected
by authors on programming, who tend to feel they have done their duty once they
have presented the rules of the language.

Pascal has been chosen because it is elegant enough to appeal to computer
scientists and professional programmers while still being simple enough to be
taught to almost anyone who is genuinely interested in programming. It is also
compact enough to run on many microcomputers — those Volkswagens of the
computer age. Indeed there are signs that Pascal will become the lingua franca
of the coming ‘computer revolution’ in schools, businesses and the home. This
book is for anyone who wants to join that revolution.

October 1981 Richard Forsyth

Acknowledgements

Various people have contributed in various ways to the making of this book. My
debt to other published authors is acknowledged in the Bibliography. Here I would
just like to thank the following people for their advice and assistance. (The order is
purely alphabetic.)

Maureen Ashman
Ashesh Datta
Cyril Drimer

Mei Lynn Forsyth
Tim Harris
Sallahe Hassan
Jeff Hillmore
Declan Kelly
Joan New

Maria Panayi
Therese Rieul
Bill Tuck

I'am also grateful to the Polytechnic of North London Computer Service,
without whose co-operation this book could not have been written.

1.1
1.2
1.3
1.4

21
2.2
2.3
24

3.1
3.2
3.3
34

4.1
4.2
43
4.4

5.1
5.2
5.3

Contents

Preface
Acknowledgements

Part 1 PASCAL AT LARGE
Introduction

Writing programs

High level languages
Algorithms and programs
Flowcharting

Errors — the calm approach

A preview of Pascal

A simple example [BIRTHDAY]

Syntax diagrams
Program structure
A word in edgeways

Declarations and types

Information and its representation

Constants
Variables
The fundamental data types

Assignment and expressions

Operators and operands
Precedence and brackets
Types of expression
Standard functions

Simple input/output
READ and WRITE
READLN and WRITELN

Example program [INFLATER]

page ix

10
10
14

16

16
23
26
27

29

29
30
31
32

36
36
37
39
40

43

43
46
47

vi

54
5.5

6

6.1
6.2
6.3
64
6.5
6.6
6.7
6.8

7

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9

9.1
9.2
9.3
9.4

10

10.1
10.2
10.3
10.4

11
11.1

CONTENTS

Exercises
Quiz

Looping and grouping

Control structures

Selection

Repetition

Embedding

Semicolons

The dreaded GOTO

Example program [DECLINE]
Exercises

Procedures and functions

Procedures

Parameters

Local variables

Functions

Recursion

Example program [CHANCES]
Exercises

Arrays

Array declaration

An array application

Vectors and matrices

Arrays of characters

Array of hope

Example program [SHOWOFF]
Exercises

Files

Types of file

Sequential files

Example program [SEARCHER]
Exercises

Sets and records

Sets and set operations

The use of records

Example program [BIGDEAL]
Exercises

Advanced topics

Passing functions as parameters

51
52

55
55
56
61
64
65
66
67
70

72

72
135
77
78
79
80
84

86

86
87
90
93
95
96
102

105

105
106
112
122

127

127
133
138
147

149
149

11.2
113
114

12

12.1
12.2
12.3
12.4

13

13.1
13.2
13.3
134

14

14.1
14.2
143
14.4
14.5
14.6
14.7

15

15.1
15.2
15.3
15.4

16

16.1
16.2
16.3
16.4

Variant records
Dynamic data structures
Example program [CHOPPER]

Programming practice
Program design
Debugging

Design faults in Pascal
Projects

Part2 PASCAL AT WORK

Case study 1 (Sorting)

Sorting files

The classic four-tape sort
A program of sorts
Discussion

Case study 2 (Finding the shortest path)

The urban transit problem
The A-star algorithm

The route finder

Data representation

User interface

The program itself
Concluding remarks

Part 3 PASCAL AT PLAY

Case study 3 (Football simulation)

Computer games

Soccer simulation

The football program
Suggested improvements

Case study 4 (Go-Moku)

The Pygmalion factor
Minimax look-ahead
The Go-Moku program
The next step

Part4 PASCAL AT A GLANCE

Appendix A ASCII code

Appendix B Basic Pascal facts

CONTENTS

vii

152
155
157

165

166
171
174
176

179

181

181
182
184
192

197

197
198
200
201
206
207
224

231

233

233
234
239
251

254
255
255
257
273
281
283

285

viii CONTENTS

Appendix C Catalogue of software

Appendix D Syntax diagrams
References

Solutions to selected exercises

Index

289
291

300

302
322

PART ONE

Pascal at Large

‘The limits of my language mean the limits of my world.’
Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Introduction

On choosing a programming language

I have never actually seen anyone come to blows over the choice of a programming
language, but it is an issue that can inspire heated argument. I have heard high-brow
Lisp addicts snidely denigrating Algol 68 (not Algol 60, that was even beneath
contempt) at an Artificial Intelligence symposium; while on another occasion I
listened meekly to an experienced systems programmer pouring torrents of abuse
on the benighted fools who persisted with ‘infantile’ and ‘mind-polluting’ languages
like Fortran and Cobol long after the true way (Algol 68 again) had been revealed
to the world. In the circumstances I thought it prudent to keep quiet about the
fact that I used such a demotic language as Basic.

Indeed few subjects arouse such passions in the data-processing fraternity. If a
letter appears one week in the correspondence columns of Computer Weekly or
another journal of that ilk, championing, say, PL/I and describing Cobol, for
example, in unfavourable terms, it is sure to provoke an immediate storm of protest
from a legion of Cobol loyalists which will take months to subside. Others will join
the fray on both sides and the controversy will probably not die down until the
editor intervenes to halt it. Much the same applies to other languages, each of which
has its devotees and detractors — some so zealous as to suggest quasi-religious
fervour. Pascal is particularly prone to inspire missionary zeal.

Against this background I do not wish to pretend that I can offer a rational
and unbiased evaluation of the merits of Pascal. Nevertheless I believe it is
important to persuade you that it has some notable advantages that make it worth
the effort of learning. The fact that people get emotional about the relative
strengths and weaknesses of programming languages shows that the question is
not a trivial one.

The importance of language in moulding thought has become known in linguistics
as the ‘Whorfian Hypothesis’ after Benjamin Lee Whorf, a scholar who drew many
of his conclusions from a study of the different modes of thought between
American Indian languages and European ones. It is perhaps best expressed by
Edward Sapir, Whorf’s teacher and colleague (Carroll, 1956).

‘Human beings do not live in the objective world alone, nor alone in the world of
social activity as ordinarily understood, but are very much at the mercy of the

4 PASCAL AT WORK AND PLAY

particular language which has become the medium of expression in their society. It
is quite an illusion to imagine that one adjusts to reality essentially without the use
of language and that language is merely an incidental means of solving specific
problems of communication or reflection.’

Applied to computing, this implies that a programming language is not a passive
instrument but an active collaborator. It means that when you write a Pascal
program you are standing on the shoulders of Niklaus Wirth, the inventor of that
language. And, quite clearly, the further you want to see, the taller should be the
giant on whose shoulders you stand. For whether vou notice it or not, the
programming language you use lays down a style of approach which necessarily
constrains its user by making some techniques easy and others difficult.

Plan of this book

This book is divided into four parts. The first part describes the rules of the Pascal
language, and shows how its features may be put to use. It also outlines some
precepts of good programming practice.

But merely learning the rules of Pascal is not the same as knowing how to write
a Pascal program, so the ‘meat’ of the book comes in Parts 2 and 3. Part 2
concentrates on two medium-to-large programs, one to sort a file of data into
order, the other to find the shortest path through a network. Both are serious
problems with many real-life applications and both are explained in detail. These
programs were written and run on a large mainframe computer (the DEC System-10)
using a Pascal compiler from the University of Hamburg.

Computing is not all hard work, however. The microprocessor has liberated the
computer from the fortified citadel of the commercial data-processing department
and from the cloistered sanctuary of the big university installation; and now that
computers have come to the people, people (especially children) find they are fun
to play with. The personal computers of today already have facilities for colour
graphics and sound output that make games more lively — the best example being
‘Space Invaders’ — and the personal computers of tomorrow will have all this and
more.

Thus it is appropriate that the programs in Part 3, which is concerned with the
more frivolous aspects of computing, were written and tested on the Research
Machines 380Z, a microcomputer which runs the popular CP/M operating system,
using Pascal/Z. The first program in Part 3 simulates a soccer game and the second
plays Go-Moku, an ancient oriental game. Both are significant pieces of work and
the reader will find complete program listings, printout from trial runs and
descriptions of methods used to help him or her come to grips with them. Reading
and understanding programs which are not just ‘Mickey Mouse’ examples is the
fastest way to appreciate the power of a programming language.

The fact that Pascal can cope with such a variety of tasks is, in my view, one
of the strongest arguments in its favour.

INTRODUCTION

The ideal reader will first peruse this book, then use it. Programming is learnt
by doing. To derive any benefit from the book, you will need to read it in
conjunction with practical work on a computer. If you have no prospect of access
to a computer system with Pascal, you may as well stop reading now.

The crunch will come at the end of Chapter 5. Up to that point it is all reading;
from then on there are plenty of exercises to keep you on your toes. If you do
not attempt the exercises (or some equivalent pieces of your own) you will
gradually lose contact, so that by about half-way through you will not understand
what you are reading. Even just typing in the example programs and getting them
to work on your system is better than no programming at all.

(Typographical note: tor clarity all computer output is shown in capitals
throughout the book; user input and program listings appear in lower case.)

5

1
Writing programs

A computer is simply a machine for processing information. Since it cannot answer
questions but can only obey orders it must be given a sequence of instructions in a
language it can understand — a program — to make it do anything useful. Someone
has to write that program; you, for instance.

There is not time here to give a potted history of computers from the abacus to
the silicon chip (as some old-fashioned programming texts did) or to delve into the
electronics of how they work (as some of the newer books do), but a little
background information about compilers and high-level languages should be useful
to the prospective Pascal programmer.

(If you do want to read about computer history and hardware two excellent
books are Using Computers and The Making of the Micro (Meek and Fairthorne,
1977; Evans, 1981).)

1.1 High level languages

The central processing unit of a computer can only obey instructions that are
encoded as groups of binary digits, termed ‘bits’, i.e. as sequences of zeroes and
ones, such as 01110110. Such instructions are said to be in machine code. Two-state
devices are easy to construct — for instance a transistorized switch may be on or off,
a voltage may be high or low, a tiny piece of magnetized material may have polarity
north—south or south—north, a current may be flowing or not — and so binary

code is very convenient for computing machines. But it is extremely inconvenient
for humans, and no one in their right mind writes programs in machine code these
days.

The task of translating from a more symbolic notation to machine code is one
that can be mechanized, and historically the first programs to carry out this task
were ‘assemblers’. The main advantage of the assembler is that its user can employ
symbolic names composed of letters and digits instead of having to remember their
binary equivalents. The assembler then converts from something like

add a,100

WRITING PROGRAMS 7
to something like
11000110 01100100

(Zilog Z-80 example).

Assembly language is still restrictive in two respects however: firstly it is tied to
the particular machine used, each computer ordinarily having its own machine code,
which means that assembly language programs cannot normally be transferred from
one machine to another; secondly the operations available are rather primitive since
they correspond to things that the processor can carry out directly — things like
comparing two characters or adding two numbers together. It is said to be a ‘low
level’ language.

By contrast each instruction iri a ‘high level’ language typically involves many
machine-code instructions; and because the language is defined on paper (not built
into a specific processor) it can, in theory, be common to a variety of different
machines. A more complex translator program, known as a ‘compiler’, is required
to implement a high level language. It is important to realize that a compiler is just
another program: its distinctive feature is that its input is a program in one (high
level) language and its output is a version of the same program in a different (low
level) language (Fig. 1.1).

Input Program Output
High level Compiler Machine Compilation
language code phase
Dits Machine Results Execution
code phase

Figure 1.1 A compiler is a program

The first high level language to be widely used was Fortran, developed in 1956.
In scientific circles Fortran is still widely used today. The next important high
level language to arrive on the scene was Cobol, first defined in 1960. The US
government made the provision of a Cobol compiler mandatory for computer
suppliers competing for government contracts, and this backing ensured its success.
It has been said that of all programs written by programmers who are paid for their
work the number of lines in Cobol far exceeds those in all other languages added
together (and not just because Cobol is rather verbose). In fact, most advertisements
recruiting programmers in the computer trade press tend to include the magic
formula ‘two years Cobol experience required’.

In 1964 Basic hit the scene and the world has never been the same. It was

