Ellis Horwood-Publishers E B
COMPUTERS AND THEIR APPLICATIONS

INTERACTIVE
FORTRAN 77

a hands-on approach

lan Chivers and Malcolm Clark

f Il N\ e
PR el v | ST
R O i h,

INTERACTIVE FORTRAN 77
A Hands-On Approach

ELLIS HORWOOD SERIES IN COMPUTERS AND THEIR APPLICATIONS

Series Editor: Brian Meek, Director of the Computer Unit, Queen Elizabeth College,
University of London

Atherton, R. Structured Programming with COMAL
Berry, R.E. Programming Language Translation
Brailsford, D.F. and Walker, A.N. Introductory ALGOL 68 Programming
Bull, G.M. The Dartmouth Time Sharing System
Burns, A. New Information Technology
Burns, A. The Microchip: Appropriate or Inappropriate Technology
Cope, T. Computing using BASIC: An Interactive Approach
Dahlstrand, I. Software Portability and Standards
Davie, F.J.T. and Morrison, R. Recursive Descent Compiling
Deasington, R.J. A Practical Guide to Computer Communications and Networking
Second Edition
Deasington, R.J. X.25 Explained
Ennals, R. Logic Programmers and Logic Programming
Fossum, E. Computerization of Working Life
Gray, P.M.D. Logic, Algebra and Databases
Harland, D.M. Polymorphic Programming Languages
Hill, 1.D. and Meek, B.L. Programming Language Standardisation
Hutchison, D. Fundamentals of Computer Logic
McKenzie, J. and Lewis, R. Interactive Computer Graphics in Science Teaching
Matthews, J. FORTH
Meek , B.L. and Fairthorne, S. Using Computers
Meek, B.L., Heath, P. and Rushby, N. Guide to Good Programming Practice, 2nd Edition
Millington, D. Systems Analysis and Design for Computer Application
Moore, L. Foundations of Programming with PASCAL
Pemberton, S. and Daniels, M. PASCAL Implementation
Pesaran, H.M. and Slater, L.J. Dynamic Regression: Theory and Algorithms
Sharp, J.A. Data Flow Computing
Smith, |.C.H. Microcomputers in Education
Spath, H. Cluster Analysis Algorithms
Spath, H. Cluster Dissection Algorithms
Stratford-Collins, M.J. ADA: A Programmer’s Conversion Course
Teskey, F.N. Principles of Text Processing
Thimbleby, H. Principles of User Interface Design
Turner, S.J. An introduction to Compiler Design
Young, S.J. An Introduction to ADA
Young, S.J. Real Time Languages
ELLIS HORWOOD BOOKS IN COMPUTING
Atherton, R. Structured Programming vith BBC BASIC
Barrett, T.P. and Colwill, S. Winning Gemes on the C. -nmodore 64
Barrett, T.P. and Jones, A.J. Winning Games on the VIC-20
Christensen, B. Begirning COMAL
Cole, D.G.J. Getting Started on the ORIC-1
Cotton, K. et al. Information Technology and the New Generation
Ennals, R. Reninning micro-PROLOG
Goodyear, P. LOGO: A Guide to Learrning irough Programming
Jones, A.J. and Carpenter, . astering the Commodore 64
Jones, A.J., Coley, E.A. and Cole, D.G.J. Niasterina the VIC-20
Matthews, T. and Smith, P. Winning Games on the ZX Spectrum
Moore, L. Mastoring the ZX Spectrum
Narayanan, A. Beginning LISP

Simon and Matthews, J. Viastaring the Electron

INTERACTIVE

FORTRAN 77
A Hands-On Approach

I.D. CHIVERS, B.Sc., C.Ed.
Senior Analyst and Programmer,
Imperial College, University of London

M.W. CLARK, B.A., M.Sc.
Senior Analyst and Programmer,
Imperial College, University of London

ELLIS HORWOOD LIMITED

Publishers - Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto

Figs‘published in 1984 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of rhe
ancient Market Cross, Chichester.

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.O. Box 859, Brisbane, Queensland 4001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, N.Y. 10016, U.S.A.

© 1984 1.D. Chivers and M.W. Clark/Ellis Horwood Limited

British Library Cataloguing in Publication Data

Chivers, 1.D.

Interactive Fortran 77.-

(Ellis Horwood series in computers and their applications)
|. FORTRAN (Computer program language)

2. Interactive computer systems

I. Title II. Clark, M. W.

001.64725 QA76.73.F25

Library of Congress Card No. 84-10890

ISBN 0-85312-775-1 (Ellis Horwood Limited)
ISBN 0-470-20101-0 (Halsted Press)

Printed in Great Britain by R.J. Acford, Chichester.

COPYRIGHT NOTICE —

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Preface
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chpater 12
Chapter 13

Chapter 14

Table of Contents

Introduction to computing
Introduction to problem solving
Introduction to timesharing
Introduction to programming
Arithmetic

Arrays and DO loops (1)
Arrays and DO loops (2)
Output; an introduction
Output; an extension
Reading in data

Making decisions (1)
Functions

Making decisions (2)

Error detection and correction

15

19

23

34

46

59

66

77

88

99

109

120

127

Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Chapter 23

Complex, double precision and logical
Characters

Subroutines

Files

Common and data statements
Optimisation

Problem solving

Operating systems

Tools in programming

\nnotated bibliography

Appendix A

ndia B
Aprendix C
A endix D

Appendix E

Tndex

Sample Listing
Sample text extracts
Code example

NAG

Functions available in Fortran

132

144

158

171

177

184

204

209

213

218

219

Preface

The aim of this book is to introduce the concepts and ideas involved in
problem solving with Fortran 77 using an interactive timesharing computer
system. The book tries to achieve this using the established practices of
structured and modular programming. Two techniques of problem solving,
so-called top-down and bottom-up are also introduced.

The book has been developed from a one week full-time course on
programming, given several times a year at Imperial College to a variety of
students, both undergraduate and postgraduate. The course itself is a
mixture of

e Lectures
e Tutorials
e Terminal sessions
¢ Reading

All work on the course is done in small groups, and the students have the
option of working in pairs. Initially, students are shy about showing their
ignorance, but quickly overcome this and learn a lot by helping one another
out and articulating their problems. This is regarded as an essential part of
the course.

The student is assumed to complete a minimum number of the problems.
Experience on courses over several years has shown the authors that oniy by
completing problems fully does the student get a realistic idea of the process
of problem solving using a programming language. It is therefore
recommended that all problems attempted are completed. Certain of the
problems are used as a basis for further development in the course. This
helps to reinforce the ideas of problem solving introduced earlici.

The authors are pleased to provide more details of the course to interested
parties.

to Joan
to Glasgow
‘Flourish’

1

Introduction to computing

‘Don’t Panic’
Douglas Adams, ‘The Hitch-Hiker’s Guide to the Galaxy’
Aims
The aims of this chapter are to introduce the following:—
 the components of a computer — the hardware

 the component parts of a complete computer system — the other
devices that you need to do useful work with a computer

« the software needed to make the hardware do what you want

10

A computer

Introduction to computing Chapter 1

A computer is an electronic device, and can be thought of as a tool, like the
lever or the wheel, which can be made to do useful work. At the
fundamental level it works with bits (binary digits or sequences of zeros and
ones). Bits are often put together in larger configurations, e.g. 6, 8, 16, 32,
60, or 64. Hence computers are often referred to as 8-bit, 16-bit, or 60-bit
machines. Most computers consist of the following:—

CPU

MEMORY

This is the heart of the computer. CPU stands for central
processor unit. All of the work that the computer does is
organised here.

The computer will also have a memory. Memory on a
computer is a solid state device that comprises a collection of
bits/bytes/words that can be read or written by the CPU. A
byte is generally 8 bits (as in ‘8-bit bytes’), and a word is
most commonly accepted as the minimum number of bits
that can be referenced by the CPU. This referencing is
called addressing . The memory typically contains programs
and data. The following diagram illustrates the two ideas of
address and contents of the memory at that address.

[| memory !
laddress! Icontents!
! ! ! !
| lhello !
! Ithis |
| lis !
! Isome |
| Itext !
I |
I I
I I

S oW L o

|
|
|
|
!
[[
Lo !
I 100 !

The cemmon word size for a micro-computer is 8 or 16 bits,
for a mini 16 or 32 bits and for a mainframe 32, 60 or 64
bits. A computer memory is often called random access
memory, or RAM. This simply means that the access time
for any part of memory is the same; in order to examine

Chapter 1

BUS

Introduction to computing 11

location (say) 97, it is not necessary to first look through
locations 1 to 96. It is possible to go directly to location 97.
A slightly better term might have been ‘access at random’.
The memory itself is highly ordered.

A bus is a set of connections between the CPU and other
components. The bus will be used for a variety of purposes.
These include control signals to switch parts of the system on
or off; address signals which tell the memory which words
are wanted next; data lines which are used to transfer data to
and from memory, and to and from other parts of the
computer system etc. This is typical of many systems, but
systems do vary considerably; while the information above
may not be true in specific cases, it provides a general
model.

A diagram for the constituent parts of a ‘typical’ computer is given below.

data
bus

|
I CPU | <—— > input/output (i/o0) devices
| |
| |
| |
! | address
| | bus
| |
1 |
MEMORY

The components of a computer system

So far the computer we have described is not sufficiently versatile. We
have to add on other pieces of electronics to make it really useful.

Disks

These are devices for storing collections of bits. One
advantage of adding these to our computer system is that we
can go away, switch the machine off, and come back at a
later time and continue with what we were doing. The

12 Introduction to computing Chapter 1

memory of a computer is expensive and fast whereas a disk
is slower but cheaper. Most computer systems balance
speed against cost, and have a small memory in relation to
disk capacity.

Tapes These are slower than disks but cheaper, generally. They
vary from ordinary, domestic cassettes used with micros to
very large drives found on most mainframe systems. These
devices are used for storing large quantities of data.

Others There are a large number of other input and output devices.
These vary considerably from system to system depending on
the work being carried out. Most large computer systems
have card readers and line-printers whilst other installations
may have more sophisticated i/o devices, e.g. plotters for
drawing graphs and photo-typesetters for the production of
high quality printed material.

The most important i/o device is the terminal. This book has been written
assuming that most of your work will be done at a terminal. Terminals tend
to come in two main types — those which have a visual display screen, a
vdu and those which operate rather like a typewriter, and type out onto a
roll of paper (tele-typewriter or fty). In either case you communicate
through the keyboard. This looks rather like an ordinary typewriter
keyboard, although some of the keys are different. However, the location of
the letters, numbers and common symbols is fairly standard. Don’t panic if
you have never met a keyboard before. You don’t have to know much more
than where the keys are. Even professional programmers seldom advance
beyond the stage of using two index fingers and a thumb for their typing.
You will find that speed of typing is rarely important, it’s accuracy that
counts.

One thing that people unfamiliar with keyboards often fail to realise is that
what you have typed in is not sent to the computer until you press the
carriage return key. To achieve any sort of communication you must press
that key; it will be somewhere on the right hand side of the keyboard, and
will be marked ‘return’, ‘c/r’, ‘send’, ‘enter’, or something similar.

Software

So far we have not mentioned software. Software is the name given to the
programs that run on the hardware.

Chapter 1 Introduction to computing 13

Programs are written in /anguages. Languages are commonly divided into
two categories; high-level and low-level. A low level language (e.g.
assembler) is closer to the hardware, while a high level language (e.g.
Fortran) is closer to the problem statement. There is typically a one to one
correspondence between an assembly language statement and the actual
hardware instruction. With a high level language there is a one to many
correspondence; one high level statement will generate many machine level
instructions.

A certain amount of general purpose software will have been written and
distributed by the manufacturer. This software will typically include the
basic operating system, several compilers, an assembler, an editor, and a
loader or link editor.

A compiler translates high level statements into machine
instructions;

An assembler translates low level or assembly language statements
into machine instructions;

An editor makes changes to another program.

A loader or link editor takes the output from the compiler and
completes the process of generating something that can be executed
on the hardware.

These programs will vary considerably in size and complexity. Certain
programs that make up the operating system will be quite simple and small
(like copying utilities), while certain others will be very large and complex
(like a compiler).

In this book we concentrate on software or programs that you write for your
course, research, or work. As the book progresses you will be introduced to
ways of building on what other people have written, and how to take
advantage of the vast amount of software already written, tested and
documented.

Operating systems

There are generally a variety of operating systems available for a particular
computer. The choice of operating system will depend on the kind of work
that the computer system has to do. A timesharing operating system is one
of the best for general purpose problem solving. These systems allow tens or
even hundreds of users to use the system simultaneously. Rapid feedback is

|] Introduction to computing Chapter 1

possible, and you can model complex systems, interact with the model, and
even change the model, sometimes in a matter of minutes. It is also possible
to set up a problem quickly and have it run as a background process, whilst
you work on another aspect of the problem.

Problems

1. Distinguish between a memory address and memory contents.

2. What does RAM stand for?

3. What would a WOM (write only memory) do? How would you use it?

4. What does CPU stand for? What does it do?

2

Introduction to problem solving

Aims
The aims here are toi—
e introduce the idea of an algorithm

« introduce two ways of approaching algorithmic problem solving —
top-down and bottom-up

« show the difference between the two with a concrete example

« stress the need for pencil and paper study before using a terminal

16 Introduction to problem solving Chapter 2

Algorithms

An algorithm is a sequence of steps that will solve part or all of a problem.
One of the most easily understood examples of an algorithm is a recipe.
Most people have done some cooking, if only making toast and boiling an

egg!

A recipe is a sequence of things to be done. There is an order to be
followed. There is no point serving up the vegetables if they have not been
prepared or cooked. However certain things can be done in any order — it
may not make any difference if you prepare the potatoes before the carrots.

There are two common ways of approaching problem solving, using a
computer. They both involve algorithms , but are very different from one
another. They are called top-down and bottom-up.

In a ‘top-down’ approach the problem is first specified at a high or general
level — prepare a meal. It is then refined until each step in the solution is
explicit and in the correct sequence, e.g. peel and slice the onions, then
brown in a frying pan before adding the beef. One draw-back to this
approach is that it is very difficult to teach to beginners because they rarely
have any idea of what ‘primitive’ tools they have at their disposal. Another
drawback is that they often get the sequencing wrong, e.g. ‘now place in a
moderately hot oven’ is frustrating firstly because you may not have lit the
oven (sequencing problem), and secondly because you may have no idea
how hot ‘moderately hot’ really is. However as more and more problems are
written it becomes one of the most effective methods for programming.

Bottom-up is the reverse to top-down(!). As before you start by defining the
problem at a high level (prepare a meal). However, now there is an
examination of what tools are available to solve the problem. This method
lends itself to teaching since a repertoire of tools can be built up and more
and more complicated problems can be tackled. Thinking back to the
recipe, there is no point trying to cook a 6 course meal if the only thing that
you can do is boil an egg and open a tin of beans. The bottom-up approach
has advantages for the beginner. However, there may be a problem when
no suitable tool is present. One of the authors learned how to make
Bechamel sauce, and was so pleased by his success that every other meal
had a course with Bechamel sauce. Try it on your fried eggs one morning.
Here was a case of specifying a problem ‘prepare a meal’, and using an
inappropriate but plausible tool ‘Bechamel sauce’.

