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Abstract

This is the third in our series of works which make a systematic study of
degenerations of complex curves, and their splitting deformations. The prin-
cipal aim of the present volume is to develop a new deformation theory of
degenerations of complex curves. The construction of these deformations uses
special subdivisors of singular fibers, which are characterized by some analytic
and combinatorial properties. Intuitively speaking, given a special subdivisor.
we will construct a deformation of the degeneration in such a way that the
subdivisor is ‘barked’ (peeled) off from the singular fiber. The construction
of these “barking deformations”™ are very geometric and related to deforma-
tions of surface singularities (in particular, cyclic quotient singularities) as
well as the mapping class groups of Riemann surfaces (complex curves) via
monodromies; moreover the positions of the singularities of a singular fiber
appearing in a barking deformation is described in terms of the zeros of a
certain polynomial which is expressed in terms of the Riemann theta function
and its derivative. In addition to the solid foundation of the theory, we pro-
vide several applications, such as (1) a construction of interesting examples
of splitting deformations which leads to the class number problem of splitting
deformations and (2) the complete classification of absolute atoms of genus
from 1 to 5. For genus 1 and 2 cases, this result recovers those of B. Moishezon
and E. Horikawa respectively.
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Introduction

Wading through,

And wading through.

Yet green mountains still.
(Santoka “Somokuto'™)

This is the third in our series of works on degenerations of complex curves.
(We here use “complex curve” instead of “Riemann surface”.) The aim of the
present volume is to develop a new deformation theory of degenerations of
complex curves. This theory is very geometric and a particular class of subdi-
visors contained in singular fibers plays a prominent role in the construction
of deformations. It also reveals the close relationship between the monodromy
of a degeneration and existence of deformations of the degeneration. More-
over, via some diagrams, we may visually understand how a singular fiber
is deformed. These deformations are called barking deformations, because in
the process of deformation, some special subdivisor of the singular fiber looks
like “barked” (peeled) off. We point out that barking deformations have a
remarkable cross-disciplinary nature; they are related to algebraic geometry,
low dimensional topology, and singularity theory.

We will further develop our theory: In [Ta,IV], we describe the vanishing
cycles of the nodes of the singular fibers appearing in barking families; we
then apply this result to give the Dehn twist decompositions of some auto-
morphisms of Riemann surfaces. In [Ta,V], we develop the moduli theory of
splitting deformations, which as a special case, includes the theory of bark-
ing deformations over several parameters (in the present volume, we mainly
discuss the one-parameter deformation theory).

Background

We will give a brief survey on history and recent development of degenerations
of complex curves. Our review is not exhaustive but only covers related topics
to our book.

' Translated by Hisashi Miura and James Green.



2 Introduction
Degenerations of complex curves

A degeneration of complex curves is a one-parameter family of smooth com-
plex curves, which degenerates to a singular complex curve. More precisely;,
let m: M — A be a proper surjective holomorphic map from a smooth com-
plex surface M to a small disk A := {s € C : |s| < &} such that 7 1(0) is
singular and 7~ 1(s) for s # 0 is a smooth complex curve of genus ¢ (¢ > 1):
so the origin 0 € A is the critical value of 7. (In what follows, unless otherwise
mentioned, complex surfaces (curves) are always supposed to be smooth.) We
say that m : M — A is a degeneration of complex curves of genus g with the
singular fiber X := 7 1(0). For simplicity, we sometimes say “a degeneration
of genus ¢g7.

Let f: S — C be a proper surjective holomorphic map from a compact
complex surface S to a compact complex curve (', and then S is called a
fibered surface (e.g. elliptic surface). We note that a degeneration appears
as a local model of a fibered surface around a singular fiber: Let X be a
singular fiber of f : S — (', and then the restriction of f to a sufliciently
small neighborhood (germ) of X in S is a degeneration. To classify fibered
surfaces, it is important to understand their local structure — degeneration

— around each singular fiber. It is also important to know when the signature
a(S) (or some other invariant) of the fibered surface concentrates on singular
fibers. Namely, when does the equality o(S) = >, 01,(M;) holds?, where M,
is a germ of a singular fiber X, in S, and o),.(M;) denotes the local signature
of M;. and the summation runs over all singular fibers (see a survey [AK]).
These questions motivate us to study degenerations and their invariants.

Apart from the (local) signature, we have another basic invariant “mon-
odromy™ of a degeneration, which also plays an important role in studying
degenerations. Given a degeneration 7 : M — A of complex curves of genus ¢,
we may associate an element h of the symplectic group Sp(2g : Z) acting on
the homology group H, (X, : Z). where X, is a smooth fiber of 7 : M — A.
The element A is defined as follows. We take a circle S := {|s| = r} con-
tained in the disk A, and then R := 77 !1(S!) is a real 3-manifold. The map
™ : R — S'is a fibration (all fibers are diffeomorphic); that is, R is a X,-
bundle over S, where X is a smooth fiber of 7 : M — A. Topologically, R is
obtained from a product space X, x [0, 1] by the identification of the boundary
E, x {0} and Xy x {1} via a homeomorphism 7 of X;. We say that v is the
topological monodromy of the degeneration 7 : Al — A. (It measures how the
complex surface M is twisted around the singular fiber X.) Then v induces
an automorphism h := ~, on H{(X, : Z), which is called the monodromy of
the degeneration. Note that h preserves the intersection form on H, (X, : Z),
and so h € Sp(2g : 7).

Monodromy already appeared in the early study of degenerations, no-
tably the work of Kodaira [Kol] on the classification of degenerations of el-
liptic curves (complex curves of genus 1). He showed that there are eight
degenerations and determined their monodromies: The singular fibers of eight
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degenerations are respectively denoted by I, I I, ITI. IV, II* 111" IV~.
(Apart from the three types II,III IV each corresponds to an extended
Dynkin diagram.) Kodaira also gave explicit construction of these eight
degenerations.

Subsequently, Namikawa and Ueno [NU] carried out the classification of
degenerations of complex curves of genus 2: there are about 120 degenera-
tions. Namikawa and Ueno encountered with new phenomena, which did not
occur in the genus 1 case: (1) The topological type of a degeneration is not
necessarily determined by its singular fiber: There are topologically differ-
ent degenerations of complex curves of genus 2 with the same singular fiber.
(2) The monodromy does not determine the topological type of a degenera-
tion. In fact, if g > 2, there are a lot of topologically different degenerations
with the trivial topological monodromy. The reason is as follows: The mapping
class group MCG of a complex curve of genus g has a natural homomorphism
MCG, — Sp(2¢g : Z) (homological representation). as ¥ € MC'¢, induces an
automorphism v, of H(X, : Z). The kernel of this homomorphism is the
Torelli group T,. (Note: If g = 1, then T} is trivial (i.e. the above homomor-
phism is injective), whereas if ¢ > 2, then T}, is nontrivial.) In particular, if
g = 2, and the topological monodromy «y of a degeneration belongs to T,
then h := 7, (monodromy) is the identity.

This fact indicates that monodromy is not powerful enough to classify de-
generations. Moreover, as is suggested by Namikawa and Ueno’s classification
of 120 degenerations of genus 2, there seem a tremendous amount of degenera-
tions of genus g. as g grows higher, and further classifications for genus 3.4. ...
got stuck. New development came from topology. Observe that in the convert-
ing process from a topological monodromy to a monodromy, some information
may be lost, and hence it is natural to guess that a topological monodromy
carries more information than a monodromy, and this is the starting point of
the work of Matsumoto and Montesinos, which we shall explain. First of all, we
note that the topological monodromy of a degeneration is a very special home-
omorphism; it is either periodic or pseudo-periodic (see [Im], [ES], [ST]). Here.
a homeomorphism v of a complex curve C' is periodic if for some positive inte-
ger m, y"™ is isotopic to the identity, and pseudo-periodic if for some loops (sim-
ple closed curves) ly,la,...,1, on C, the restriction v on C\ {l1,la,... l,} is
periodic. A Dehn twist v along a loop [ on C' is an example of a pseudo-periodic
homeomorphism, as the restriction of v to C'\ [ is isotopic to the identity.

Remark 1 There is a classical study of pseudo-periodic homeomorphisms
due to Nielsen [Nil] and [Ni2]; he referred to a pseudo-periodic homeomor-
phism as algebraically finite type.

For a pseudo-periodic homeomorphism +, let m be the integer as above, i.e.
A" on C\ {l1,la,...,1,} is isotopic to the identity. Then 4™ is generated by
Dehn twists along 1,1y, ..., 1,. According to the direction of the twist, a Dehn
twist is called right or left. A pseudo-periodic homeomorphism -y is right or left
provided that 4™ is generated only by right or left Dehn twists. The complex
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structure on a degeneration poses a strong constraint on the property of its
topological monodromy. Using the theory of Teichmiiller spaces, Earle-Sipe
[ES] and Shiga--Tanigawa [ST] demonstrated that any topological monodromy
is a right pseudo-periodic homeomorphism — in [MM2], it is called a pseudo-
periodic homeomorphism of negative type. For example, if the singular fiber
is a Lefschetz fiber (a reduced curve with one node), then the topological
monodromy is a right Dehn twist along a loop [ on a smooth fiber C'. Note
that the singular fiber is obtained from C by pinching [; in other words, [ is
the vanishing cycle.

Matsumoto—Montesinos theory

Matsumoto and Montesinos established the converse of the result of Earle—
Sipe and Shiga-Tanigawa. Namely, given a periodic or right pseudo-periodic
homeomorphism +, they constructed a degeneration with the topological
monodromy «. Their argument is quite topological, using “open book con-
struction”. In [Ta,II], we gave algebro-geometric construction, clarifying the
relationship between topological monodromies and quotient singularities.

We denote by P, the set of periodic and right pseudo-periodic homeomor-
phisms of a complex curve of genus g, and denote by ﬁg the conjugacy classes
of P,. Next, we denote by D, the set of degenerations of complex curves of
genus g, and denote by ﬁg its topologically equivalent classes. The main result
of Matsumoto and Montesinos [MM2] is as follows:

Theorem 2 (Matsumoto and Montesinos [MMZ2]) The elements of ﬁg
are in one to one correspondence with the elements of D,.

One important consequence of this theorem is that the topological classifica-
tion of degenerations completely reduces to the classification of periodic and
right pseudo-periodic homeomorphisms.

Matsumoto and Montesinos [MM2] also determined the shape (configura-
tion) of the singular fiber of a degeneration in terms of the data of its topolog-
ical monodromy —— screw numbers and ramification data. Here, we must take
care when using the word “shape”, because a shape depends on the choice of
model of a degeneration, and it changes under blow up or down. Algebraic
geometers usually work with the relatively minimal model of a degeneration —
a degeneration is relatively minimal if any irreducible component of its singu-
lar fiber is not an exceptional curve (a projective line with the self-intersection
number —1). However, from the viewpoint of topological monodromies, the
relatively minimal model is not so natural. The most natural one is the nor-
mally minimal model, because it reflects the topological monodromy very well
[MM2]. We now review the definition. Express a singular fiber X as a divisor:
X =3, m;0; where 0, is an irreducible component and a positive integer m;
is its multiplicity. Then 7 : M — A is called normally minimal if X satisfies
the following conditions:
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(1) the reduced curve X,cq := >, ©; is normal crossing (i.e. any singularity
of Xieq is a node), and

(2) if ©; is an exceptional curve, then ©; intersects other irreducible compo-
nents at at least three points.

We point out that a relatively minimal degeneration, after successive blow
up, becomes a normally minimal one, which is uniquely determined from the
relatively minimal degeneration.

In what follows, unless otherwise mentioned, we assume that o degenera-
tion is normally minimal. According to whether the topological monodromy
is periodic or pseudo-periodic, the singular fiber is stellar (star-shaped) or
constellar (constellation-shaped). Here, a singular fiber X is called stellar? if
its dual graph is stellar (star-shaped): X has a central irreducible component
(core), and several chains of projective lines emanating from the core (see
Figure 4.2.1, p61). Such a chain of projective lines is called a branch of X.
A constellar singular fiber is obtained by bonding branches of stellar fibers,
and a resulting chain of projective lines after bonding is called a trunk; it is a
bridge joining two stellar singular fibers.

The number of the singular fibers of genus g increases rapidly, as g grows
higher; this is because a constellar singular fiber is constructed from stellar
singular fibers in an inductive way with respect to the genus. For instance,
a constellar singular fiber of genus 2 is bonding of two stellar singular fibers
of genus 1. (Precisely speaking, there is also a constellar singular fiber of
genus 2 obtained from one stellar singular fiber of genus 1 by bonding its two
branches.) A constellar singular fiber of genus 3 is either bonding of three
stellar singular fibers of genus 1, or bonding of two stellar singular fibers of
genus 1 and 2. And as g grows, the partition of the integer g increases rapidly,
and accordingly the number of constellar singular fibers increases rapidly.

Based on the work of Matsumoto and Montesinos, Ashikaga and Ishizaka
[AI] proposed an algorithm to carry out the topological classification of degen-
erations of given genus. Although the practical computation becomes difficult
as genus grows higher, their algorithm settled down the topological classi-
fication problem of degenerations at least theoretically. They applied their
algorithm to achieve the topological classification for the genus 3 case (see
[AI]): The number of degenerations is about 1600, and among them there are
about 50 degenerations with stellar singular fibers. (For any genus, the number
of stellar singular fibers is much less than that of constellar singular fibers.)

Morsification

There are about 8, 120, and 1600 degenerations of genus 1, 2, and 3 respec-
tively, and as the genus grows higher, the number of degenerations increases

2 We have a similar notion in singularity theory, that is, a star-shaped singularity:
A singularity V is star-shaped if the dual graph of the exceptional set in the
resolution space of V is star-shaped, e.g. a singularity with C*-action. See [OW],
[Pn].
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rapidly. This fact motivates us to consider another kind of classification —
“classification of degenerations modulo deformations”. Before we explain it,
we review related materials from Morse theory, which elucidates the relation-
ship between the shapes of smooth manifolds and smooth functions on them.
One of the key ingredients of Morse theory is the Morse Lemma, asserting that
we may perturb a smooth function f : A/ — R in such a way that f; : Al — R
has only non-degenerate critical points. A non-degenerate critical points is
stable under arbitrary perturbation, and so the Morse lemma ensures that we
may split critical points of f into stable ones under perturbation. Of course.
the Morse lemma is a result in the smooth category, but its spirit is car-
ried over to the complex category, for instance, Morsification of singularities:
When does an isolated singularity V' admits a deformation {V;} such that V,
for t # 0 possesses only Aj-singularities? (It is known that any hypersurface
isolated singularity admits a Morsification, e.g. see Dimca [Di] p82)

We next explain Morsification of singular fibers, which was advocated by
M. Reid [Re]. First of all, we review splitting deformations.

Splitting deformations of degenerations

Let Al := {t € C : |t| < &} be a sufficiently small disk. Suppose that
M is a complex 3-manifold, and ¥ : M — A x Al is a proper flat surjective
holomorphic map. We set M, := W1 (Ax {t}) and 7, := Wlpy, : My — Ax{t}.
(Hereafter, we denote A x {t} simply by A, so that m; : M; — A.) We say
that ¥ : M — A x Al is a deformation family of m: M — A if my : My — A
coincides with # : M — A. In this case, m; : M; — A is referred to as a
deformation of w: M — A.

Suppose that 7 : My — A for t # 0 has at least two singular fibers, say.
N X X, (n > 2). Then we say that ¥ : M — A x AT is a splitting
family of the degeneration 7 : M — A, and that m, : M, — A is a splitting
deformation of @« M — A. In this case, we say that the singular fiber
X = 7 Y0) splits into X1, Xo,..... Xy

To the contrary, if a singular fiber X admits no splitting deformations
at all. the degeneration 7 : M — A is called atomic. The singular fiber of
the atomic degeneration is called an atomic fiber. (Caution: This terminology
is not completely rigorous, because a singular fiber does not determine the
topological type of a degeneration, so we must use it with care.) A Lefschetz
fiber (i.e. a reduced curve with one node) and a multiple m© of a smooth
curve ©, where m > 2 is an integer, are examples of atomic fibers (see [Ta,l]).

A Morsification of a degeneration 7 : M — A is a splitting family ¥ : M —
A x A such that for ¢ # 0, all singular fibers of m, : M, — A are atomic
fibers. Unfortunately this notion is too restrictive, as many degenerations of
high genus secem to admit no Morsifications. Instead, we work with a weaker
notion “a finite-stage Morsification”, defined as follows. If 7 : M — A is
not atomic, take a splitting family ¥ : M — A x AT, say, X splits into
X1. Xy, ..., X, (the first-stage splitting). If all singular fibers X, X5, ..., X,
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are atomic, the first-stage splitting is a Morsification. If some X; is not atomic,
then take a sufficiently small neighborhood M; of X; in M;, and then consider
the restriction of m; to M;, which is a degeneration m; : M; — A (called
the fiber germ of X; in m : M, — A). Next, take a splitting family ¥,
M; = A x AT of m; : M, — A, say, X; splits into X; 1, X;2,..., X;m (the
second-stage splitting). Repeating this process, we finally reach to a set of
atomic fibers, say, X1, X}, ..., X/: Under the finite-stage Morsification, X
splits into atomic fibers X, X}, ..., X/. In this case, we obtain a smooth
4-manifold M’ together with a locally holomorphic map «’ : M’ — A such
that (1) M’ is diffeomorphic to Al and (2) all singular fibers X{, X5, ..., X] of
7’ are atomic. Here, “locally holomorphic map™ means that M’ has a complex
structure around X/, and 7’ is holomorphic with respect to this complex
structure. A finite-stage Morsification of a degeneration is useful for studying
the topological types of fibered algebraic surfaces.

There is another motivation from algebraic geometry to study Morsifica-
tion. inspired by the following question: How does an invariant of a degen-
cration (e.g. local signature, Horikawa index [AA1]) behave under splitting.
Specifically, let inv(7) be some invariant of a degeneration m : M — A. Sup-
pose that m; @ Al — A is a splitting deformation, which splits the singular
fiber X into singular fibers X;. Xo, .. ... X,,. Then find a formula of the form

n

inv(m) = Zinv(m) + ¢,

=1

where m; : M; — A is a fiber germ of X; in Ay, and ¢ is a “correction term".
For these problems, we refer the reader to excellent surveys [AE], [AK]. and
also [Re].

A primary concern of the Morsification problem of degenerations is to clas-
sifv all atomic degenerations. The number of atomic degenerations of genus g
must be much less than that of all degenerations of genus g. and so this prob-
lem leads us to a reasonable classification — classification of degenerations
modilo deformations.

When is a degneration atomic? Before we discuss this problem, we explain
several methods to construct splitting families.

Double covering method for hyperelliptic degenerations

A hyperelliptic curve C' is a complex curve which admits a double covering
(' — P! branched over 2g + 2 points on P!, where g = genus(C'). (All com-
plex curves of genus 1 and 2 are hyperelliptic.) A degeneration 7 : M — A
is called hyperelliptic provided that any smooth fiber 7 !(s) is a hyperellip-
tic curve. In this case, the total space M is expressed as a double covering
M — P! x A branched over a complex curve (branch curve) B in P! x A,
and conversely from this double covering, we may recover the hyperelliptic
degeneration m: M — A. (Precisely speaking, instead of M, we need to take



