HAYDEN

e

MINICOMPUTERS

Structure & Programming

T. G. LEWIS

Associate Professor, Computer Science
University ot Southwestern Louisiana

J. W.DOERR

Project Supervisor
Moore Systems, Inc.

(]

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

To our own little "minis":

Paige and Stacey for beauty
Todd and Eric for truth.

Library of Congress Cataloging in Publication Data

Lewis, Theodore Gyle, date
Minicomputers: structure and programming.

Bibliography: p.

Includes index.

1. Miniature computers. I. Doerr, J. W., joint
author. II. Title.
QAT6.5. 1L.494 001.6'42 76-21228
ISBN 0-8104-5642-7

Copyright © 1976 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

77 78 79 80 81 82 83 84 YEAR

-119xx95 Aoog jo burdiy pue bHuriesiq
—opoo drysuewuad Syl pue ozedeT 9339UAT JO butdXa
SSOTMETI 9Y3 03 Sjueylz Ino ‘OsSTy -IoTeM AxxdL 3O
uotyeurbeur pue dryspustiy/drysispesT syl a3eToaxdde
A1dosp om zernor3zxed ul -TeTasjew STY3 BurdoTeAsp
STTYM SOSINOD BuTINPUS IOF SHUBYF SMO SM BURTSTINOT
UI9]1SOMUINOS JO AJTSISATUN SYF Pue ‘BITOY—TINOSSTH
Jo A3TSISATUN U3 3B SIUSPNIS 9yl 0O -Iusuebeinoous
pue 3xoddns 9MO oM 33DTTTD STTITH pue USTAWeH
uyor OF -3IoM STUI O3 PoIngIrIjuocod oym o1doad a3

o3 uotjeroaxadde IToyl ssoxdxe O3 YSTM SIoyjne YL

CONTENTS

Introduction « « « « o o o o o o o o = o e .
Part I Preliminaries . . « « « o o « o o o

1 Bits and ProCesSeS . « « o « o o o o o o =

Storing Data and Programs (10) Number Bases (12)
Conversion of Integers Between Binary and

Decimal (13) Conversion of Fractions Between
Binary and Decimal (16) Information Content and
Loss (18) Algorithms (22) Problems (25)

2 Breaking the Minicomputer Code

Codebooks (27) Locations for Storage of
Ciphertext (28) Octal Coding and Conversion by
Humans (29) Hexadecimal Coding and Conversion by
Humans (34) BCD Coding and Conversion by
Computers (37) Alphanumeric and Special
Character Coding (45) Problems (50)

3 Number Crunching . . « « « « « o« o o o =« =

Number Representation (51) Integers (51)
Floating Point Representation and Arithmetic (61)
Multiple Precision (66) Problems (73)

Part IT Minicomputing . . . < & .+ & o o . -

4 Programmer's View of Computer Hardware . .

Minicomputer Definition (76) Minicomputer
Operation (79) Random Logic/Control Memory (81)
Registers (82) Stacks/Conventional Machines (83)
Instruction Sets (87) ALU operations (89)
Questions (91)

5 Programmer's View of Peripherals and
Communications . « « « ¢ ¢« ¢ o ¢ o o o o =

Communications (92) Errors (100)
Peripherals (105) Questions (117)

10

27

51

75

76

92

6

Part

10

11

Index

A Demonstration Mini
A PDP-11 Overview (119) The PDP-11 Instruction
Set (127) Problems (130)

Instruction Repertoire « « « « .

Arithmetic and Control (131) Logical and Shift
Instructions (149) Subprogramming Instruc-
tions (165) Input/Output Instructions (174)
Problems (177)

III Software Engineering

Software Development System

Software Aids (180) Text Editing (181)
Assembly Translation (188) Linkers and
Loaders (204) Utilities (208) Problems (208)

Programming Techniques
Recursion (210) Data Structures (217)
Problems (236)

Programming Examples« . « « . .

Looping and Counters (237) Number Coding and
Conversion (238) I/0 Programming (241)
Subprogramming and Recursion (245) Scanning
and Table Operations (247) Sorting (249)
Problems (253)

Microprogramming . . .« « « « ¢« o « « o« &

Introduction (254) Economic Advantage (257)
Beginnings (258) A Vertical M-Processor (263)

119

131

179
180

210

237

254

279

INTRODUCTION

Even though minicomputers are widely used in industry
they are slow to gain acceptance in computer science educa-
tion. However, because of its increasingly great impact on
industry and its potential as a teaching device, the mini-
computer should be considered a part of the computer science
curriculum. This book is appropriate for a minicomputer
laboratory course at the lower division level emphasizing
hands-on use, fundamental computer concepts in conjunction
with computer lore, and problems peculiar to small machines.
Also, an upper division course is possible which emphasizes
demonstration of advanced programming techniques.

The Silent Explosion

Mini Population Explosion

The estimated number of minicomputers as of January, 1973
was 55,000 worldwide [1]. This represents a sizeable part
of computers in general. The impressive fact, however, is
that an additional 55,000 minis were purchased in 1973. Thus,
the indications are that minis are mushrooming in numbers.

The mini is found in a variety of applications, but over
half are used in process control, engineering-problem-solving,
and data communications applications [1]. Educational use,
however, amounts to only 7% of mini applications. By sheer
numbers alone educators are lagging in minicomputer usage,
and by inference, in minicomputer training.

This lack of recognition of the need for minicomputer ex-
posure in the university may partially account for the fact
that minicomputer software is inadequate (one-third of the
respondents to Modern Data's Survey complained about various
aspects of software). Traditionally, minicomputer manufac-
turers have been hardware oriented and have neglected software
development.

-1~

2 Minicomputers: Structure and Programming

Superprogrammer Enters

The hardware explosion in minis must be followed by a
software explosion if these machines are to be useful. The
level of sophistication needed to implement a minicomputer
software system does not decrease merely because the machines
are smaller and have less powerful instruction sets. On the
contrary, the abilities of a programmer are perhaps chal-
lenged by minis. The short word length, limited core, and
use in time constrained applications contribute to the chal-
lenge. How are we, as educators helping our students meet
this challenge?

A second significant contribution of the mini explosion
comes from advancing technology. From semiconductor memory,
floppy disks, to stack processors and microprogrammed pro-
cessors, the mini leads the way in many respects. It may be
that ideas and concepts spawned in computer science classes
are beginning to impact the real world. With minis in the
classroom we are now in a position to demonstrate these con-
cepts in a way not possible using a large central machine.

As an example of the software engineering gap, examine the
stack processing concepts currently being advocated by most
computer science departments. In a large machine dominated
world, a student has little opportunity to program a stack
machine. But in the mini world the stack operators are fre-
quently found in hardware. Indeed, many new minis are de-
signed around a stack/interrupt driven processor.

The result of stack implementation is that theory (e.g.,
parsing, recursion) is reflected in practice. The authors'
personal experience has shown a combination of theory and
practice yields a high return.

Computer Heritage

Babbage and the Poet's Dbaughter

How many computer science students appreciate the history,
folklore, and excitement that is part of the computer scene?
How many students realize that the stored program concept is
part of the foundation of computer science? Do they appreci-
ate the work of Von Neumann, Babbage, and Lady Lovelace? Do
they get a feeling of perspective, excitement, and involve-
ment from tracing their own development with that of computer
greats?

Unfortunately, the answers to the questions above are no,
in the case of most early courses. We educators are failing

Introduction 3

to convey a sense of historical perspective to our novice
programmers. As an example, here is a story that adds to
the excitement of learning about stored programs, Charles
Babbage, and the notion of a looping algorithm. We use this
story to prepare students for a programming assignment in
their minicomputer laboratory.

When Babbage was a young boy he attempted to prove the
existence of the devil by drawing a circle on the floor
with his own blood. He expected the devil to appear while
reciting the Lord's Prayer backwards. This same eccentric
genius had a great idea: the difference engine. This was a
mechanical calculator that produced tables by adding differ-
ences. For example, the table of squares, below, is com-
puted by addition only.

first second
n n? difference difference
1 1
2 4 3
3 9 5 2
4 16 7 2

Thus, 9 is obtained by adding 2 to 3 to get 5. The 5 is
added to 4 (22) to get 9 (32). This process is repeated to
get 42, etc.

Babbage's machine was very accurate and led to the dis-
covery of errors in established astronomical tables. Babbage
once exclaimed upon discovery of an error: "I wish to God
that these had been calculated by steam."

The point is that a perspective is given. A student
begins to appreciate the struggle men had in developing
computers. As a participating laboratory student, he can
repeat the experiment of Babbage's difference engine himself.
Perhaps his programming errors are similar to the bug in
Lady Lovelace's programs. Perhaps some students will answer
"ves" to the previously posed questions of excitement, dis-
covery, and involvement.

Contemporary Prophets and the Touching Syndrome

Many computer science departments are implementing mini-
computer laboratory courses [2, 3, 4, 5]. The computerware
ranges from simulators (terminal based via timesharing) to
real minicomputer systems. The software varies from simili-
tude devices and fully multiprogrammed systems to simplicity
itself [3, 4].

Minicomputers: Structure and Programming

The authors conjecture that an educational software

laboratory that stimulates student interest, motivates in-

depth study, and provides minicomputer training per se in

addition to a foundation in general computer science, will

employ the following:

1. hands-on laboratory

2. open shop, 24 hrs/day, 7 days/week

3. historical perspective

4. use of advanced technology in hardware and soft-
ware techniques

5. minimization of the "magical" aspects of computers

The hands-on laboratory has a psychological effect noted
by others [3, 4]. This touching syndrome is known to waylay
a few students who become addicted and have difficulty
staying in school. The majority, however, are sensibly
motivated.

An open shop laboratory is essential. The best lab is
one run by students themselves. At the University of
Missouri-Rolla, for example, the software laboratory was
almost entirely installed, administrated, maintained, and
policed by student volunteers.

The touching symbiosis not only leads to student involve-
ment, but also animates historical points. Again, this book
intends to emphasize perspective as an important ingredient
in a minicomputer laboratory course. Who are the innovators
of modern computing? Who are the Babbages and Von Neumanns?
These people are the ones that contemporary students can
relate to.

Again, I use the stack mechanism that exists on many
minis as an example. Dijkstra published the first paper on
stacks and recursion. He is usually given as a historical
figure when relating stacks to the student. I tell my
students Dijkstra's story about getting a wedding license
and writing "programmer" as his vocation. The city offi-
cials knew of no such profession. Yet this occurred within
the lifetime of most students.

Another motivation for using minicomputers in a software
laboratory stems from the rapid incorporation of new tech-
nology. An example is the current availability of micro-
programmable minis. These machines open an entirely new
door to students and teachers. Are students being equipped
to use microprocessors by the traditional computer science
formula? Can they get close to hard core computing by
growing up with the maxi in the computer center?

Introduction 5

The minicomputer lab is definitely intended to rid
students of their feelings of uncertainty when it comes to
separating the function of hardware and software. Magic and
other "Merlin-the-Programmer" effects are rapidly dissipated
by touching the equipment. Development of basic concepts
must be done in a specific manner, however, before one suc-
ceeds in dismissing witchcraft.

In short, students should be led through a progression of
more and more sophisticated software. As a suggestion start
with a barebones machine, graduate to a bootstrap system, a
loader, a simple assembler, an editor, a two-pass assembler,
a linking loader, a software engineered package or operating
system, and finally, an entire system of file/editor/oper-
ating system. Each step represents a layer of software that
separates man from machine. The layers are applied succes-
sively, however, so that they may be better understood.

The Academic Connection

This material is intended for a one-semester beginning
course in Computer Science. A particular philosophy is be-
hind the book: computing is a laboratory science. Engineer-
ing, physics, chemistry and biology are recognized laboratory
courses. Now, Computer Science is clearly becoming a science
in its own right with its own lore and terminology. There-
fore, this material is intended to complement a hands-on
laboratory containing a minicomputer as minimum "laboratory
equipment."

The myth that computer science can be taught using a cen-
tral large-scale computer is dying. There are two reasons
for this:

(1) large-scale systems are too complex and sophisticated
for purely instructional purposes requiring de-
tailed and specialized knowledge, and

(2) the central facility cannot be modified as often
happens when students experiment.

A large scale central computer does offer economy of scale
and the level of sophistication most likely to be met in the
real world. It does not, however, provide a very enlighten-
ing device for beginners. The distinction between software
and hardware as well as the level of software sophistication
result in a feeling of magic being practiced by instructors
and machines. There is beauty in simplicity when teaching
fundamental computer science.

Secondly, students must be able to make mistakes and
crash the system in order to gain wisdown through experience.

6 Minicomputers: Structure and Programming

It would be unimaginable to allow a select few to interrupt
an institutional-wide computer in order to test an I/0 rou-
tine. Yet this must be allowed somewhere in a computer
science curriculum. In particular, I/O, interrupts, and
console operation are possible by hands-on computing. These
features are not provided by a secure central machine.

Why minicomputers? Once we have established the need to
dedicate a machine and use it as a laboratory device, why
should we select minicomputers over other machines?

The obvious explanation is cost. An excellent software
laboratory can be equipped with minicomputer and peripherals
for $20-50K (as of this writing). In addition, the author
estimates the half-life of this estimate to be three years.
This means that the same equipment should be available at
half the cost in three years, one-fourth in six years, and
so on until some plateau is reached.

The not-so-obvious reason is due to technology. Mini-
computers incorporate the latest technological advances al-
most immediately. This contributes to their decreasing
cost, but more importantly, technology influences computer
design. Therefore, students familiar with a late-model
mini are exposed to recent advances. This will be evident
in this book which emphasizes late-model features such as
stack processing, zero-register machines, and unified
approaches to I/O.

Finally, a limitation of minicomputers actually turns
out to be an advantage in education. This is addressing.
A minicomputer typically has a short word (16 bits) and as
such the instruction length is limited. Short words force
the minicomputer designer to use an abundance of addressing
modes: indexed, indirect, auto-increment, page zero, rela-
tive, and combinations of these. Thus the educator has a
programmers' paradise full of addressing modes and students
benefit from being exposed to many ways of addressing.

A criticism of all this might be: "In a few years a
particular minicomputer recently purchased will be obsolete
and these advantages will be lost." This is true if educa-
tors are not careful in selection of equipment. Either a
trend setting or a flexible mini that can be reorganized
through microprogramming and faster memory should be
selected. 1In either case the lifetime/capital investment
ratio of minicomputers is very attractive.

This book is about fundamental computer science. How-
do-you-do-it is emphasized at the risk of too much boring
detail. The authors have attempted to unify many concepts

Introduction 7

and state them as laws-of-computing or rules. Unfortunately
computer science is too young to possess a unified theory of
programming and computing. Therefore a pragmatic thread
weaves through the book.

The course must be accompanied by a laboratory. The par-
ticular form of this lab will depend greatly upon the way a
computer center/computer science department is organized.
The following suggestions are given.

The level of sophistication should be kept low. Computer
centers are tempted to keep building more and more whistles
and bells into the software. Computer Science Departments
are usually trying to increase the sophistication of existing
software. The laboratory must be protected against empires
whether they are software, hardware, or organizational. Stu-
dent run labs work well: they are apolitical and do not
trample on vested interests.

The software and hardware must streamline the user's work
when the user is ready to go forward. In other words the
text editor is useless during the first two to three weeks,
but priceless at the end of the course. A system that pro-
duces punched paper tape at every step is invaluable in
dramatizing the assembly process, but becomes painful near
the end of the lab course.

Minicomputers: Structure and Programming

References for Introduction

Executive Summary of Modern Data's 1973 Minicomputer
Market Survey. Modern Data Services, Inc., 3 Lockland
Avenue, Framingtham, Mass. 01701.

ACM Curriculum Committee. "Curriculum-68: Recommendation
for Academic Programs in Computer Science," Comm. ACM,
11, 3 (March 1968).

Desautels, E. J. "A Small Computer in a Large Univer-
sity," Proc. of ACM SIGPLAN Symposium on Pedagogic
Languages with Small Computers, ed. Bulgren and Schweppe.
Lawrence, Kansas: University of Kansas, January 1972,

pp. 28-32.

Konstam, A. H. "The Small Computer and Undergraduate
Education," Proc. of ACM SIGPLAN Symposium on Pedagogic
Languages with Small Computers, ed. Bulgren and Schweppe.
Lawrence, Kansas: University of Kansas, January 1972,

pp. 9-13.

Marsland, T. A. and Tartar, J. "A Course in Minicomputer
Systems," SIGCSE, Vol. 5, No. 1 (February 1973), pp. 153-
156.

PART I

Preliminaries

CHAPTER 1
BiTs AND PROCESSES

The arithmetic capability of a minicomputer is much the
same as large computers, that is binary in nature. The
availability of floating point operations and special deci-
mal arithmetic features is usually limited and considered an
option. Therefore, the purpose of this chapter is to give a
firm foundation in binary representation of information.
Along with the methods of counting and conversion, we wish
to impress upon the reader two very important concepts: the
stored program concept and the notion of algorithm. These
two ideas are elevated to the level of COMPUTER FUNDAMENTAL
to show their relative importance. Thus, the reader should
firmly grasp the following: binary numbers, stored program
concept, and algorithm process concept.

1.1 Storing Data and Programs

If you were considering the design of a computer, what
would you look for? How would you store information? How
would numbers be entered and retrieved? These and other
questions were considered by the early computer builders.
These pioneers laid down foundations upon which modern digi-
tal computers are based. Two basic ideas we will discuss
are:

(1) the storage of instructions which control the

machine, and

(2) the storage of information (data) both using a

binary system.

Both forms of storage use a binary system.

The idea of storing data to be manipulated dates back to the
first mechanical computer (Charles Babbage in the 19th cen-
tury). 1In addition, the early use .of punched cards led to
storing instructions within the operating machine as well as
data.

John von Neumann is credited with reviving the stored
program concept [1]. This is perhaps the most important
single concept in computing. The sequence of instructions,
or program, which controls the machine is contained within a

-10-

Bits and Processes 11

computer in the same form as data. Indeed, these instruc-
tions may be mistakenly interpreted as data by another
program.

COMPUTER FUNDAMENTAL #1. The best way to control a
camputer is to store its instructions within the
memory of the computer as if these instructions were
data. This idea of taking instructions from memory
(just as data is retrieved from memory) , is called
the stored program concept.

The stored program concept is basic to all concepts pre-
sented in this book and will be reiterated. The guestion
posed for now is: how are data and programs stored and in-
terpreted? What is the best method of "coding" to accomplish
program/data storage?

The binary or base two number system has become accepted
as the most economical, simple, and speedy implementation for
digital computers [2]. Binary numbers represent a quantity
using only zeros and ones. For instance, 10010 is a binary
number representing the quantity 18. The term bit has been
used since the late 1940's to mean "binary digit" [3]. The
example, 10010 is a 5-bit number.

Since only zeros and ones are needed to write a binary
number, a group of two-state switches are used to store the
number within the computer, with one state representing 0 and
the other representing 1. These two-state switches, called
flip-flops, are considered less complicated and therefore
more economical than ten-state switches needed to store a
decimal digit.

Flip-flops are fast because a simple "yes" or "no" state
is needed, and the reversal from "yes" to "no" is done in one
simple step. Flip-flops are also faster when doing arithme-
tic operations as we will see later.

The big disadvantage of the binary system is interpreta-
tion by humans. We are reluctant to think in terms of binary
since we are culturally biased toward decimal. Therefore, it
is necessary that we become familiar with a new number system.
However, because we prefer decimal we want to be able to con-
vert from binary to decimal and from decimal to binary. Let's
examine the binary number system and others commonly employed
in computers and find ways to convert from these systems to
decimal.

