NI N == X Xk 7 ¢ t

MlxpM <=1 1 LM-M[;1]

“ > n

\'jA .

-~ -
.2 = =

oo Ao v L
%) |' : el
" Learning APL:

An Array
Processing
Language

James A.Mason

O
Z o B
U-rwwrv: bt 4

[#pM;] =D x M[xoM <11 JM-M[:1]°



LEARNING

AP L AN ARRAY

PROCESSING
LANGUAGE

James A. Mason

York University

HARPER & ROW, PUBLISHERS, New York
Cambridge, Philadelphia, San Francisco.

London. Mexico City, Sao Paulo, Singapore, Sydney

1817



To my parents, Lucile and Keith

Sponsoring Editor: John Willig

Project Editor: David Nickol

Text Design: Betty L. Sokol

Cover Design: Betty L. Sokol

Production: Delia Tedoff

Compositor: Computer Data Systems, Inc.

Printer and Binder: R. R. Donnelley & Sons

VAX is a trademark of Digital Equipment Corporation.

Learning APL: An Array Processing Language
Copyright© 1986 by Harper & Row, Publishers, Inc.

All rights reserved. Printed in the United States of America. No
part of this book may be used or reproduced in any manner
whatsoever without written permission, except in the case of brief
quotations embodied in critical articles and reviews. For
information address Harper & Row, Publishers, Inc., 10 East 53d
Street, New York, NY 10022.

Library of Congress Cataloging in Publication Data

Mason, James A.
Learning APL.

Bibliography: p.

Includes index.

1. APL (Computer program language) I. Title.
IL. Title: Learning A.P.L.
QA76.73.A27M37 1985 001.64'24 84-25151
ISBN 0-06-044243-3

85868788987654321



Preface

A typical programmer first learns computer programming in a language like
BASIC, COBOL, FORTRAN, Pascal, or PL/I, in which data manipulations are
performed in many small steps, each described by a separate statement. Usually
even the simplest tasks to be performed in such a language require programs of
more than ten statements, and most tasks require much longer programs.

APL is a very different programming language, since it permits the
programmer to perform complicated data manipulations with extremely short
programs and even with one-line expressions. The need for the programmer to
write explicit loops, conditional statements, and assignment statements is
minimized by the power of the functions that APL provides for manipulating
arrays of data. Of all the common general-purpose programming languages,
APL is the one in which application systems can be implemented fastest.

The main ideas of APL were developed by Kenneth Iverson and presented in
his book A Programming Language (John Wiley & Sons, 1962), although the
notation of APL has changed from Iverson's original version and many features
have since been added to the language. The acronym APL comes from the title
of Iverson's book. The subtitle of this book (An Array Processing Language)
suggests a more specific interpretation of the acronym.

The goal of this book is to help the reader to acquire fluency in APL by
learning to think in terms of arrays of data and by learning the large vocabulary
of APL functions that operate on arrays. That learning is best accomplished by
solving problems in APL. Hence, the most important parts of this book are the
exercises. They have been chosen carefully to be short, but interesting and
challenging, and to be cumulative in their effect. In order to be accessible to the
widest possible readership, the exercises have been designed to require only

ix



X PREFACE

high-school mathematics, for the most part, and to involve character data as
much as numerical data. Many of the exercises suggest practical applications.

This book is intended primarily for readers who already have some
experience with computer programming in a language other than APL. For such
readers it is suitable either for self-study or for use in a one-semester course.
The book may also be used in a course for novice programmers if it is
supplemented with introductory material on the elements of computer usage
and programming.

The book should be read as much as possible in sequence from beginning to
end, although parts involving three-dimensional and higher-dimensional arrays
may be skipped over on first reading, if desired. As many of the exercises as
possible should be solved, and the answers tested on a computer. (Suggested
answers to some of the exercises are given in an appendix.) Each exercise
should be solved using only those features of APL that have been introduced
up to that point in the book. In classroom use it is appropriate for some of the
exercises to be used as examples in class and the rest to be assigned as
homework.

The first six chapters cover most of the standard features of the APL
language as well as some common extensions. The coverage is reasonably
comprehensive but not exhaustive. In addition to this book it is desirable to
have a reference manual for whatever implementation of APL is being used.
That will provide details of features of APL that are beyond the scope of this
book and that may differ from one version of APL to another. (Those include
certain system commands, system variables, system functions, and file-accessing
functions that are not part of standard APL.)

Chapter 7 illustrates a way of making APL expressions look like English
sentences, a technique that has not been presented in other books on APL. It
also provides a case study of how an application can be implemented quickly
and easily as a workspace of many small, cooperating APL functions.

Having used and taught APL and other general-purpose programming
languages for over 10 years, I have found APL about the most pleasant and
easiest-to-use language of all. I am confident that after reading this book and
working the exercises, the reader will have acquired fluency in APL and will
have come to share my enthusiasm for this interesting and powerful
programming language.

I would like to thank the following people for their help in producing this
book (my sincere apologies to anyone I have overlooked): Lewis Baxter, Allan
Cobb, Eric Drumm, Richard Levine, and Peter Roosen-Runge for their
comments on earlier versions of the book; my students, especially George
Stephen who contributed several exercises; my editors, John Willig and David
Nickol, and sales representative Ellen Graca at Harper & Row, and the
prepublication reviewers, for their helpful suggestions for improving the
manuscript; my friends Beatrice and Marvin Mandelbaum, Jane and Lawrence
Muller, and P. Rajagopal for their encouragement; Donald Solitar for his
comments and for his invaluable help in producing the final copy of the



Preface xi

manuscript; York University for providing computing facilities; and the staff of
the Atkinson College Duplicating Centre for their careful and speedy work.
Special thanks go to Thomas Plum for a conversation that inspired me to
develop Chapter 7. Finally, I would like to thank Saundra, Eric, and Allan for
their patience and support.

James A. Mason



CHAPTER 1

CHAPTER 2

CHAPTER 3

11
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13

31
3.2

Contents

Preface ix

USING APL 1

The Unique Nature of APL 1
Example APL Sessions 2
System Commands 7

Typing APL 10

APL EXPRESSIONS AND ARRAYS

Variables and Assignment (+) 12
Numbers 13

Characters 14

Arithmetic Functions (+ = x <+ *) 14
Comparison Functions; True (1) and False (0)
Arrays, Shape, and Reshape (p) 16
Monadic Versus Dyadic Functions 22
Ravel (,) 23

Catenate (,) 23

The Right-to-left Precedence Rule 28
The Index Generator (1) 31

Laminate (,) 32

Subscripts 35

USER-DEFINED FUNCTIONS 43

Defining Functions 44
Displaying Function Definitions 44

12

15



vi

CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7:

3.3
34
3.5
3.6
3.7

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10

5.1
5.2
5.3
54
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2

Kinds of Functions 45

Invoking Functions 47
Local Versus Nonlocal Variables 48
Passing Arguments via Parameters 51

Editing Functions 52

MORE APL PRIMITIVE FUNCTIONS 60

Additional Numeric Functions 60
Maximum ([ ) and Minimum (L) 63
Logical Functions 65

Reduction (/) 68

Compression and Replication (/) 72
Membership (€) 79

Index (1) 81

Take (4) and Drop (¥) 83

Reverse and Rotate (¢) 86
Transpose (8) 91

MORE ABOUT USER-DEFINED
FUNCTIONS 97

Input and Output (Q and M) 97

Semicolon ( ;) and Diamond () 102

Branch (=) and Labels 103

Conditional Branches 104

Interrupting Execution, and the State Indicator Stack 109
User-defined Control Functions 114

Recursive Programming 118

ADVANCED AND SPECIALIZED
FUNCTIONS AND OPERATORS 128

Scan (\) 128

Grade up (4) and Grade down (¥) 134
Expansion (\) 139

Outer Product (° . Function) 143

Inner Product (f. g) 150

Roll and Deal (?) 157

Format (%) 161

Execute (2) 168

Encode (T) and Decode (1) 176

Matrix Inverse and Matric Division (H) 187

MAKING APL EXPRESSIONS
LOOK LIKE ENGLISH 190

Specifications for a Simple Text Editor 191
A Set of English-like Commands for the Text Editor 192



APPENDIX A
APPENDIX B

APPENDIX C
APPENDIX D

7.3
7.4
7.5

Contents vii

Semantics of the Text Editor 197

Implementation Details of the Text Editor 198
Extensions and Limitations of the Text Editor 216
THE APL KEYBOARD AND CHARACTER SET 229

SYSTEM COMMANDS, SYSTEM VARIABLES,
AND SYSTEM FUNCTIONS 233

COMMON ERROR MESSAGES 243
ANSWERS TO SELECTED EXERCISES 245
BIBLIOGRAPHY 251

INDEX 253



Chapter 1

USING APL

1.1 The Unique Nature of APL

APL is a language of a very different sort from the more well-known pro-
gramming languages COBOL, FORTRAN, BASIC, PL/I, and Pascal, and it is
generally easier to use than any of them. The main power of APL resides in its
functions for manipulating arrays of data. In many cases they eliminate the
need for explicit step-by-step programming. In APL, short expressions can often
be written to do what would require many statements in one of the more con-
ventional programming languages.

Unlike most other popular languages, APL is a highly interactive language,
designed to be used conversationally at a typewriter terminal or video display
terminal. The APL user types one-line expressions and receives immediate re-
sponses from the computer. Data values are entered at the terminal and can be
used immediately for computations or can be stored in a permanent library for
later use. Programs, called functions, are also typed at the terminal and can be ex-
ecuted immediately or saved in the user’s library. Because of its conversational
nature and its conciseness, APL is a very pleasant language to use.

The next section of this chapter gives some short examples of sessions at an
APL terminal. One thing you will notice from the example sessions is that APL
uses an unusual set of characters. Except for its system commands, APL has no
English keywords, and each primitive function in the language is represented by
a single symbol (or in a few cases, two). The use of symbols rather than words
makes APL expressions very concise, and understandable internationally. How-
ever, it does take some time and effort to get used to the APL symbols. So we
will learn the meanings of the various symbols gradually. Appendix A shows
where the APL characters are found on a normal APL keyboard.



2 USING APL

1.2 Example APL Sessions

In the following pages examples of two APL sessions are presented. These ses-
sions should be read not for full understanding, but to get an initial idea of
how APL is used.

Lines typed by the person who was using the computer have been underlined
for clarity. Also, some explanatory comments have been added.

After you have finished reading Chapter 1, you should try to recreate parts of
the example sessions on your computer. Consult Appendix A for help in typing
the special characters used in the examples.

Session 1

Sign on to the computer and entry to the APL system. (Exact details vary from one system to
another.)

CLEAR WS —The initial workspace is clear (empty).

HIGHS<+3 ~1 8 15 27 25 32 35 24 18 10 6  —assigning an array
of high
temperatures for the
months of a year, in
degrees Celsius

Note the raised negative sign (), not to be confused with the minus sign (-).

HIGHS
3 71 8 15 27 25 32 35 24 18 10 6 —displaying the array of
high temperatures

HIGHS[6 7 8] —displaying the highs for June, July, and
August
25 32 35
LOWS« 25 22 78 73 71 5 15 18 2 "4 "2 "10 —assigning an
array of low
temperatures
for the months
of the year
[/HIGHS —finding the highest of the highs
35
L/LOWS —finding the lowest of the lows
~25
(+/HIGHS)+12 —computing the average of the highs
16.83333333
A/HIGHS2LOWS —testing that each high is at least as large as
the corresponding low
1 —1 means frue.
(HIGHS>25)/112 —finding the months with high temperatures

5 7 8 greater than 25 degrees Celsius



1.2 Example APL Sessions 3

RANGE+«HIGHS—-LOWS —finding the difference between the high and
low temperatures for each month

RANGE —displaying the temperature ranges for the 12
months
28 21 16 18 28 20 17 17 22 22 12 16

(RANGE=T /RANGE) /112 —finding the months with the maximum
temperature range

VE<FARENHEIT C —defining a new function
[1] ACONVERTS TEMPERATURES FROM CELSIUS T0 FARENHEIT —a comment
[2] F<32+Cx1.8
[3] V¥ —end of function definition

FARENHEIT HIGHS —applying the function to the vector of highs
37.4% 30.2 46.4% 59 80.6 77 89.6 95 75.2 6u4.4 50 42.8

JWSID TEMPS —giving the workspace a name (TEMPS)
WAS CLEAR WS

)SAVE —saving the workspace on disk
13:24:16 18-FEB-84 3 BLKS TEMPS

JLIB —listing names of workspaces in the user’s

disk library

GRADES
PRICES
TEMPS

JOFF —signing off

Sign off messages.

Session 2:
Sign on.

CLEAR WS

JLIB —Listing the names of workspaces in the
user’s disk library
GRADES
PRICES
TEMPS



4 USING APL

YLOAD PRICES —loading a workspace from the library
SAVED 19:56:50 17-FEB-84 2K
JFNS —listing the names of user-defined functions
in the workspace
LIST
VLISTLO]V —displaying the definition of the LIST

function
V QUANTITIES LIST PRICES;EXT

[ 1 ] ] 1

[2] EXT«QUANTITIESXPRICES

[3] ' UNIT EXTENDED'
[u] "QUANITITY PRICE PRICE'
[ 5 ] 1] 1 ]

[6] 5 0 9 2 10 2 ¥QUANTITIES,PRICES,[1.5]EXT
\J ]

[8] 'TOTAL: 'y 10 2 %+/EXT
v
JVARS —listing the names of variables in the
workspace
p Q
P —displaying the value of variable P
1.75 0.59 3.98 17.25 32.98 2.99 19.95
Q —displaying the value of variable @
38122901
Q@ LIST P —applying the LIST function to  and P
UNIT EXTENDED
QUANTITY PRICE PRICE
3 1.75 5.25
8 0.59 4,72
12 3.98 47.76
2 17.25 34.50
9 32.98 296.82
0 2.99 0.00
1 19,95 19.95
TOTAL: 409.00
VLIST[.1] —inserting some new lines into the LIST
function
[0.1] A COMPUTES EXTENDED PRICES AND TOTAL PRICE
f0.2] A FROM GIVEN QUANTITIES AND UNIT PRICES

[0.3] v



1.2 Example APL Sessions

VLISTLO]V —displaying the revised definition of LIST
V QUANTITIES LIST PRICES::EXT
(1] & COMPUTES EXTENDED PRICES AND TOTAL PRICE
[2] A FROM GIVEN QUANTITIES AND UNIT PRICES
[3] v
Cu] EXT+«QUANTITIESxPRICES
1

[5] UNIT EXTENDED'
(6] "QUANTITY PRICE PRICE"
[7] [ L]

[8] 5 09 2 10 2 ¥QUANTITIES,PRICES.[1.5]EXT
[g] L |

[10] 'TOTAL: 's 10 2 ¥+/EXT
v
JERASE P @ —erasing variables from the workspace
JVARS —checking whether any variables remain
JWSID —displaying the name of the current active
workspace
PRICES
)SAVE —saving the workspace in the disk library
14:39:52 19-FEB-84 4 BLKS PRICES
YLOAD TEMPS —loading the workspace saved in Session 1
SAVED 13:24:16 18-FEB-84 2K
JVARS —listing names of variables in the workspace
HIGHS LOWS RANGE
HIGHS —displaying the value of HIGHS
3 71 8 15 27 25 32 35 24 18 10 6
LOWS —displaying the value of LOWS
725 722 "8 73 715 15 18 2 "4 "2 T10
MONTHS+112 —creating an array of month numbers
MONTHS —displaying the value of variable MONTHS
123 4567 89 10 11 12
MONTHS[AHIGHS] —displaying month numbers in order of

increasing high temperatures
2112 3 11 4 10 9 6 5 7 8

MONTHS[LALOWS] —displaying month numbers in order of
increasing low temperatures
12 12 3 10 4 11 5 9 6 7 8

JCLEAR —clearing the active workspace
CLEAR WS




6 USING APL

A SOME SHORT EXAMPLES: —a comment
n POWERS OF TWO:

x\16p2
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

A A MULTIPLICATION TABLE:
TABLE+(110)0.%x(110)

TABLF
1 2 3 ) 5 6 7 8 9 10
2 4 6 8 10 12 1y 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 1y 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

A BIG LETTERS:

BIGO+10 10p'0" —creating big letter 0" in a 10-by-11
character matrix
BIGO[2+163;2+16]«" '

BIGO[1 10;1 10]«"' !

BIGO+BIGO,"' '

BIGF+10 11p'FF',9p"' ' —creating big letter ' F' in another 10-by-11
character matrix

BIGF[1 2:;110]«"'F"'

BIGF[6 7:;16]«'F"

BIGO,BIGF,BIGF —printing a word made from the big letters

00000000 FFFFFFFFFF FFFFFFFFFF
0000000000 FFFFFFFFFF FFFFFFFFFF

00 00 FF FF
00 00 FF FF
00 00 FF FF
00 00 FFFFFF FFFFFF
o0 00 FFFFFF FFFFFF
00 00 FF FF
0000000000 FF FF

00000000 FF FF

JOFF —signing off

Sign off messages.



1.3 System Commands 7

1.3 System Commands

Before we get into the APL language itself, you must know a few things about
the APL system environment: how to sign on and off from APL, and how to
save and retrieve things in your private library for permanent storage of pro-
grams and data (which is usually on a disk storage device). Many of the system
commands summarized in this section have already been illustrated in the sam-
ple terminal sessions.

A key element of the APL system is the workspace. When you sign on to an
APL system you are given a clear workspace into which you can enter data and
functions, and in which you can perform computations. The workspace you are
using at any one time is called the active workspace. Whenever you wish you can
save the entire active workspace, including the data and functions in it, in your
library. The library can contain many workspaces, which remain stored when
you sign off from the computer. At any time when you are signed on, it is
possible to load a workspace from your library. The workspace loaded will then
become the active workspace.

A typical APL session consists of the following sequence of steps:

1. Sign on to the computer and enter the APL system.
2. Use the initial clear workspace, or load a workspace from your library.
3. Enter data, enter function definitions, and do computations in the active
workspace.
4. Repeat as often as desired:
a.  Save the active workspace in your library (if you want to keep it).
b. Obtain a new clear workspace or load another workspace from your
library.
¢. Enter data, enter function definitions, and perform computations in
the active workspace.
. 5. Save the active workspace in your library (if desired).
6. Sign off from the computer.



8 USING APL

To use APL you need to know the following system procedures and com-
mands. System commands begin with a right parenthesis to distinguish them
from names of variables or functions.

How To Sign On The procedure for signing on to APL varies from one
computer to another. Generally the procedure is quite simple, but you will have
to learn it from manuals for your particular computer and terminal.

How To Sign Off Signing off is easier than signing on but no less impor-
tant. If you forget to sign off, and instead simply turn off your terminal, vari-
ous undesirable things may happen: You may lose data, or you may incur extra
usage charges if you are paying for computer usage. To terminate an APL ses-
sion properly you should type the system command

JOFF

In reply the computer will type an appropriate message, perhaps including some
job statistics, such as the cost of the session and the balance remaining in your
account.

How To Get a Clear Workspace When you sign on to APL the active
workspace is initially clear, containing no data or functions. If at some other
time you want to replace the active workspace by a clear workspace, type the
system command

YCLEAR

That command will destroy all user-defined functions and data currently in the
active workspace.

How To Give a Name to the Active Workspace Workspaces stored in your
library must have distinct names, called workspace IDs. You can give a workspace
a (new) name when it is active by typing

)WSID name
including the name which you have chosen, as in this example:
)WSID PROJECT

In reply, the system will give the old name for the workspace, or will type
WAS CLEAR WS if the workspace was unnamed. Different versions of APL
have different rules regarding what are acceptable workspace names. Usually a



