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Preface

The visualization of complex conceptual structures is a key component of
support tools for many applications in science and engineering. A graph is
an abstract structure that is used to model information. Graphs are used
to represent information that can be modeled as objects and connections
between those objects. Hence, many information visualization systems re-
quire graphs to be drawn so that they are easy to read and understand.
In this book, we describe algorithms for automatically generating clear and
readable diagrams of complex conceptual structures.

Graph Drawing

Graph drawing addresses the problem of constructing geometric represen-
tations of graphs, networks, and related combinatorial structures. Geomet-
ric representations of graphs have been investigated by mathematicians for
centuries, for visualization and intuition, as well as for the pure beauty of
the interplay between graph theory and geometry. In the 1960s, computer
scientists began to use graph drawings as diagrams to assist with the un-
derstanding of software. Knuth’s 1963 paper on drawing flowcharts [Knu63]
was perhaps the first paper to present an algorithm for drawing a graph for
visualization purposes.

Today, the automatic generation of drawings of graphs finds many ap-
plications. Examples include software engineering (data flow diagrams,
subroutine-call graphs, program nesting trees, object-oriented class hierar-
chies), databases (entity-relationship diagrams), information systems (orga-
nization charts), real-time systems (Petri nets, state-transition diagrams),
decision support systems (PERT networks, activity trees), VLSI (circuit
schematics), artificial intelligence (knowledge-representation diagrams), and
logic programming (SLD-trees). Further applications can be found in other
science and engineering disciplines, such as medical science (concept lat-
tices), biology (evolutionary trees), chemistry (molecular drawings), civil
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engineering (floorplan maps), and cartography (map schematics).

Because of the combinatorial and geometric nature of the problems in-
vestigated, and the wide range of the application domains, research in graph
drawing has been conducted within several diverse areas, including discrete
mathematics (topological graph theory, geometric graph theory, order the-
ory), algorithmics (graph algorithms, data structures, computational geom-
etry, VLsSI), and human-computer interaction (visual languages, graphical
user interfaces, software visualization). A bibliography on graph drawing
algorithms [DETT94] cites more than 300 papers. In addition, a large body
of related nonalgorithmic literature exists on geometric graph theory, topo-
logical graph theory, and order theory.

Various graphic standards are used for drawing graphs. Usually, ver-
tices are represented by symbols such as points or boxes, and edges are
represented by simple open Jordan curves connecting the symbols that rep-
resent the associated vertices. However, the graphic standards may vary de-
pending upon the application. For example, mathematicians seem to prefer
straight-line drawings, where edges are straight-line segments, while circuit
and database designers tend to use orthogonal drawings, where edges consist
of horizontal and vertical segments. Within a graphic standard, a graph has
infinitely many different drawings. The usefulness of a drawing of a graph
depends on its readability, that is, the capability of conveying the meaning
of the graph quickly and clearly. Readability issues can be expressed by
means of aesthetic criteria, such as the minimization of crossings between
edges, and the display of symmetries.

When drawing a graph, we would like to take into account a variety of
aesthetic criteria. For example, planarity and the display of symmetries are
often highly desirable in visualization applications. In general, in order to
improve the readability of a drawing, it is important to keep the number
of bends and crossings low. Also, to avoid wasting space on a page or a
computer screen, it is important to keep the area of the drawing small,
subject to resolution rules. In this scenario, many graph drawing problems
can be formalized as multi-objective optimization problems (e.g., construct a
drawing with minimum area and minimum number of bends and crossings).
Trade-offs are often necessary in order to solve these problems.

The purpose of this book is to describe fundamental algorithmic tech-
niques for constructing drawings of graphs.

Organization of the Book

This book is organized as follows:
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In Chapter 1, we review the terminology of graphs and their drawings.

Chapter 2 presents general graph drawing methods which use the algo-
rithms presented in the following chapters as building blocks. It provides
guidelines for employing the technical material of the book in the design of
graph drawing algorithms and systems.

Divide and conquer is an evergreen paradigm in computer science. In
Chapter 3, we apply this technique to draw trees and series-parallel digraphs.
Further, we show how to test the planarity of a graph using the divide and
conquer paradigm.

Chapter 4 presents techniques for constructing various types of drawings
of planar graphs. These techniques can also be used for drawing nonplanar
graphs by means of a preliminary planarization step.

In Chapter 5, we present methods based on network flow. These methods
construct a planar orthogonal drawing of an embedded planar graph, with
the minimum number of bends.

Flow techniques are used again in Chapter 6 to address the upward pla-
narity testing problem for digraphs. The study of upward planarity has fas-
cinating connections with fundamental graph-theoretic and order-theoretic
properties.

Incremental techniques are presented in Chapter 7. We apply these
techniques to the graph planarization problem, and also use them to design
algorithms suitable for interactive systems.

In Chapter 8, we focus on constructing orthogonal grid drawings of non-
planar graphs. The presented techniques are based first on orienting a given
graph, and then drawing it one vertex at a time, following the order of the
orientation.

Chapter 9 presents the hierarchical approach for creating polyline draw-
ings of digraphs with vertices arranged in horizontal layers. This approach
is highly intuitive and can be applied to any digraph.

Chapter 10 presents several techniques that take a graph as input and
simulate a system of forces reflecting user preferences. A straight-line draw-
ing results from an equilibrium configuration of the force system.

In Chapter 11, we present techniques for investigating the intrinsic limits
of graph drawing algorithms, both in terms of the quality of the output and
in terms of computational resources required.

In Appendix A, we tabulate upper and lower bounds on properties of
drawings of graphs, and discuss trade-offs between such properties.
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Use of the book

The reader is expected to be familiar with basic algorithms and data struc-
tures. This book is primarily written for three audiences.

e It can be used as a text in an advanced undergraduate or graduate
course in graph drawing. It can also provide material for courses that
devote part of their attention to graph drawing; these include compu-
tational geometry, graph algorithms, and information visualization.

e It provides researchers with techniques that cover the main themes
of the graph drawing area. Also, the chapters are relatively self con-
tained, allowing for independent reading.

e Engineers involved in creating user interfaces can use this book as a
fundamental source for effective and practical graph drawing methods.

Most chapters end with several exercises and problems. Many of them
are devoted simply to testing the level of knowledge of the material contained
in the chapter. Some exercises require more thought, and some are suitable
for advanced courses.
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Chapter 1

Graphs and Their Drawings

Relational structures, consisting of a set of entities and relationships be-
tween those entities, are ubiquitous in computer science. Such structures
are usually modeled as graphs: the entities are vertices, and the relation-
ships are edges. For example, most tools in software engineering use graphs
to model the dependency relationships between modules in a large program.
A module is represented as a vertex in a graph, and the dependency of
module a on module b is represented by an edge from a to b. These graphs
are typically drawn as diagrams with text at the vertices and line segments
joining the vertices as edges. The example in Figure 1.1 represents the de-
pendencies between some of the modules in Xwindows. In the example in
Figure 1.2, the vertices represent documents in a hypertext system and the
edges represent hyperlinks between the documents.

Visualizations of relational structures are only useful to the degree that
the associated diagrams effectively convey information to the people that
use them. A good diagram helps the reader understand the system, but a
poor diagram can be confusing and misleading.

For example, consider the two diagrams in Figure 1.3. Both diagrams
represent a simple class hierarchy; vertices represent classes of geometric
shapes, and edges describe the is-a relation. Here each vertex represents a
class, and a directed edge between two vertices represents the class-subclass
relationship. Figure 1.3.a is more difficult to follow than Figure 1.3.b. This
book is about graph drawing algorithms, that is, methods to produce graph
drawings which are easy to follow.

The main purpose of this introductory chapter is to define the basic

concepts for graphs and graph drawings. Related material is available in
many textbooks:
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Figure 1.2: A graph representing hypertext documents and links between
them. (Courtesy of M. Huang.)

e Graph theory is described in [BM76, Har72].

e Graph algorithms are illustrated in [Eve79, Gib80, Meh84, NC88,
Tar83).

e There are many textbooks describing basic data structures and al-
gorithms, for example, [CLR90, GT98]. Also, a reference book for
computational complexity is [GJ79].

e Computational geometry provides a good background for many graph
drawing methods (see [PS85]).

A graph G = (V,E) consists of a finite set V of vertices and a finite
multiset E of edges, that is, unordered pairs (u,v) of vertices. The vertices
of a graph are sometimes called nodes; edges are sometimes called links,
arcs, or connections.

An edge (u,v) with u = v is a self-loop. An edge which occurs more
than once in E is a multiple edge. A simple graph has no self-loops and
no multiple edges. Most of this book deals with simple graphs, and unless
otherwise specified, we assume that graphs are simple.
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Figure 1.3: Two drawings of a class hierarchy.

The end-vertices of an edge e = (u,v) are u and v; we say that v and v
are adjacent to each other and e is incident to u and v. The neighbors of v
are its adjacent vertices. The degree of v is the number of its neighbors.

A directed graph (or digraph) is defined similarly to a graph, except
that the elements of F, called directed edges, are ordered pairs of vertices.
The directed edge (u,v) is an outgoing edge of u and an incoming edge of
v. Vertices without outgoing (resp. incoming) edges are called sinks (resp.
sources). The indegree (resp. outdegree) of a vertex is the number of its
incoming (resp. outgoing) edges.

A (directed) path in a (directed) graph G = (V,E) is a sequence
(v1,v9,...,vp) of distinct vertices of G, such that (v;,v;4+1) € E for 1 <
i < h—1. A (directed) path is a (directed) cycle if (vp,v1) € E. A directed
graph is acyclic if it has no directed cycles.

An edge (u,v) of a digraph is transitive if there is a directed path from
u to v that does not contain the edge (u,v). The transitive closure G' of
a digraph G has an edge (u,v) for every path from u to v in G. In many
applications, a digraph conveys the same information as its transitive clo-
sure. For example, since class inheritance is transitive, the class diagram in
Figure 1.4 contains the same information as the one in Figure 1.3. However,



as Figure 1.4 shows, transitive edges can clutter a graph drawing and cause
confusion. In general, for many digraphs it is better to draw a reduced di-
graph (also called transitive reduction), that is, a digraph with no transitive
edges. Figure 1.3 shows the reduced digraph of the digraph in Figure 1.4.
Many of the algorithms in this book deal with reduced digraphs.

X

\

Rectangle

Point

Figure 1.4: The transititive closure of the class hierarchy in Figure 1.3.

A graph G' = (V',E’'), such that V' CV and ' CEN(V'x V'), is a
subgraph of graph G = (V,E). f E' = EN (V' x V') then G’ is induced by
V.

A graph G = (V, E) with n vertices may be described by a nxn adjacency
matrizx A whose rows and columns correspond to vertices, with A,, = 1 if
(u,v) € E and Ay, = 0 otherwise. Table 1.1 gives a description of a graph
(let us call it G1) as an adjacency matrix.

Another way to describe a graph is by giving a list L, of edges incident
to vertex u for each u € V. A description of a directed graph (let us call it
G3) in this format appears in Table 1.2.



