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INTRODUCTION

I am pleased to present the proceedings of the Fifth French-German Conference on Optimization
held in the castle Castel-Novel in Varetz near Brive from the 37 to 8th of October 1988. Its aim was
to review the work carried out by various research groups, to intensify the exchange of ideas and to
evaluate the state of arts and the trends in the area of optimization.

As a consequence of the spectacular growth in speed of computation, one witnesses an increasing
role of discrete optimization and of computation complexity questions. In order to reflect these trends
a survey talk on discrete optimization was invited and a special session was dedicated to projective
methods in linear programming.

During the meeting, state-of-art talks were given in selected topics: identification — H. Bock
(Heidelberg), nonsmooth optimization — A. D. loffe (Haifa), discrete optimization — B. Korte
(Bonn), sensitivity analysis — K. Malanowski (Warszawa), projective methods — J.-Ph. Vial
(Geneéve).

The contents of the volume differ slightly from the program of the conference (the latter is recalled
on pages V and VI). In fact, the results published elsewhere do not appear here, as require the rules
of the Lecture Notes. On the other hand, some authors unable to attend the meeting wished
nevertheless to contribute to the proceedings. I am very grateful to the referees of this volume for the
excellent work that they have done.

Previous French-German conferences were organized:

— first in Oberwolfach (16-24 March 1980) by A. Auslender, W. Oettli and J. Stoer;

— second in Confolant (16-20 March 1981) by J.-B. Hiriart-Urruty;

— third in Luminy (2-6 July 1984) by C. Lemaréchal;

— fourth in Irsee (21-26 April 1986) by K.-H. Hoffmann, J. Zowe, J.-B. Hiriart-Urruty and
C. Lemaréchal.

The Equipe d’Analyse non linéaire et d’Optimisation did its best to prepare this meeting. On the
other hand, I had received valuable assistance from several members of the Scientific Committee; I
owe them my gratitude.

Let me express high appreciation to the institutions that supported this conference which would
not have taken place without their generosity. I gratefully acknowledge the cordial reception by the
City of Brive who offered also a recital (of Thérése Dussaut and Jean Barthe) and by the Conseil
Général de 1a Dordogne during the excursion to Sarlat and the Grottes de Lascaux.

Limoges, the 5th of June 1989 Szymon Dolecki
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A SMOOTHING TECHNIQUE FOR NONDIFFERENTIABLE
OPTIMIZATION PROBLEMS

A. BEN-TAL! AND M. TEBOULLE?

Abstract . We introduce a smoothing technique for nondifferentiable optimization problems.
The approach is to replace the original problem by an approximate one which is controlled by a
smoothing parameter. The recession function is instrumental in the construction of the approx-
imate problem. An a priori bound on the difference between the optimal values of the original
problem and the approximate one is explicitly derived in term of the smoothing parameter. The
relationships between the primal approximated problem and its corresponding dual are investi-
gated.

1. INTRODUCTION

In this paper we introduce a smoothing mechanism for nondifferentiable optimization problems.
The idea underlying our approach is to approximate the original nondifferentiable problem by a per-
turbed problem. The basic tool to generate such an approximate problem is through the use of reces-
sion functions. The resulting approximate problem is a smooth optimization problem which contains
a smoothing parameter. This parameter controls the accuracy of the approximation. When the parame-
ter approaches zero, the original problem is recovered. In Section 2 we recall some basic properties of
recession functions and present the framework for smoothing nondifferentiable optimization prob-
lems. Our approach is general enough to cover many interesting problems, including £,-norm mini-
mization and min-max optimization. This is illustrated via examples. In Section 3, we derive an a
priori error bound on the difference between the optimal values of the original problem and the ap-
proximate one. The duality correspondence existing between the recession function and the support
function leads naturally to explore the relationships between the primal perturbed problem and its cor-
responding dual. These duality results are derived in Section 4 and some applications are given.

We will frequently referred to results in Rockafellar book [3]. The notations and definitions used
here are the same as in that book. Recall that the recession function of the function g is denoted by
g0*, the domain of g is denoted by dom g. The conjugate function of g is denoted by g* and is de-
fined as

g*(z) = sup{ <x,z>-g(x):x € dom g}

where < -, - > denotes the inner product in R™. The support function of a set S is given by
8%(zIS) =sup{ <x,z>:x e S} and the relative interior of S is denoted by ri S.

1 Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa 32000, Israel.
Supported by NSF Grant ECS-8801240.

2 Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore. Supported by
AFOSR Grant 0218-88 and NSF Grant ECS-8802239.
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2. THE SMOOTHING METHOD

We consider the following optimization problem :
(P) inf {G(x) := F(f,(x),..., f ,(x))}

n
xeR

and where we assume that {fj(x), i = 1,..., m} are real functions over R", and F is the recession
function of some proper convex function g,

2.1 F(y) = g0*(y) = sup{g(x + y) — g(x) : x € dom g}

The recession function is a positively homogeneous convex function (see [3, Theorem 8.5, p.66}).
In the sequel we assume that g : R™ — R is a closed proper convex function and that 0 € dom g.
Let us define

Fe(y) =€ 5&)
Then from [3, Corollary 8.5.2, p.67] we have

F(y) = m F(y) VyeR"

£—-0

Thus, for small € > 0, we can approximate F by Fg. Hence, an approximated (perturbed) problem for

P)is:
£,(x) fm(x)
mf { GE(X) =€ g( T aeeey ) }
€ €

n
xeR

(Pe)

The usefulness of the approximation lies in the fact that frequently g (and hence Fg) is a smooth func-
tion, while F is not. Here € > 0 plays the role of a smoothing parameter.

2.1. EXAMPLE . Consider the £;-norm minimization problem :

; £(x) |
1) = le i(x)

xeR

Here, F(y) = Tl yi l. It is easily verified that F(y) is the recession function of

g(y>=§‘/1+y3,

hence the resulting approximate problem is the smoothed problem :
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- / 2
(P1)e min Z fi(x)2 +€

n i=1

xeR

This is precisely the nonlinear approximation problem suggested by El-Attar et al. [2] for solving the
£,-norm optimization problem.

2.2. EXAMPLE . Consider the continuous-discrete min-max optimization problem :
min max f(x)
n 1<i<m
(P2) xeR

Here, F(y) = max y; which is the recession function of
1<i<m

m

g(y) =log z cyi

i=1
Hence, the resulting approximation is the smoothed problem :

= fi(x)
min € logz exp (—)

(P2)£ n i=1 E
xeR

This approximate function here is similar to the penalty function used in Bertsekas [1, Section 5.1.3].

3. ERROR ANALYSIS

In this section we show that the difference between the optimal values of the original function and
the approximate one, is bounded by a term which is proportional to the smoothing parameter €. We
first recall the following result.

3.1. LEMMA . [3, Theorem 13.3, p. 116] Let g be a proper convex function. Then

(g*0") (x*) = 8*(x* | domg) = sup <x, x*>
x€ domg

If g is closed,then
(g0") (x) = 8*(x Idomg) = sup <x,x*>
x*e domg
We denote by x* and x* the minimizers of G(x) and Gg(x) respectively. We may now establish the

£
main result of this section.

3.2. THEOREM . Let g be a closed proper convex function and suppose that the following
assumption holds :

A) Ve>0 egz/e) 2 (g0h)(z) Vz
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Then for every € >0
0<G(xp) — G(x*) <eg(0)

Proof . Since g is closed we have

g*(z)=g(z) = sup ([<tz>-g*1)
te domg*
< sup <t,z>+ sup (—g*(t)
te domg* te domg*

but sup (—g*(t)) = g(0) and, from Lemma 3.1 sup <t ,z>= (g0+)(z). Hence,
te dom g* te dom g*

g(z) — (g0%)(z) < g(0) for every z

Applying the above inequality at z = f(x) / € = (f1(x) / &,..., fm(x) / €)T and using the fact that (g0*) is
positively homogeneous, it follows that

(3.1) Ge(x) — G(x) < e-g(0)
Now, since x* = argmin G(x), then G(x*) < G(x) for every x and thus in particular
G(x¥%) — G(x*) 2 0.
From assumption (A) we have Gg(x) > G(x) for every x. Hence
G(x"s‘) - G(x*) < Gg(x"é) — G(x*)

But, x";: = argmin Gg(x), then Gg(x"é) < Gg(x) for every x and thus in particular Gg(x"é) < Gg(x¥*).
Combining with the above inequality it follows that

G(x%) — G(x*) < Ge(x¥) — G(x*) < Ge(x*) — G(x*) < e-g(0)

The last inequality following from (3.1) O
Note that assumption (A) holds trivially for Examples 2.1 and 2.2

3.3. EXAMPLE . From Example 2.1 we have g(0) = m, thus for the £,-norm minimization
problem the following holds :

0< G(x"é) - G(x*)<em

3.4. EXAMPLE . From Example 2.2 we have g(0) = log m, hence for the min-max problem

0< G(x"e‘) - G(x*) <elogm

4. DUAL PROBLEMS

The dual correspondence existing between the recession function and the support function as given
in Lemma 3.1, leads naturally to explore the relationships between the primal problem and the
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induced dual. In the sequel we assume that the functions f1(x),..., fm(x) are convex and we denote
f(x) = (fi(x), ..., fm(x))T.
Recall that the primal problem is

P) inf  {G(x) = (g0")(f,(X),..., £,()))

n
xeR

By Lemma 3.1, we have

(g0")(y) = 8"(y | dom g*)
Thus (P) can be rewritten as the following min-max problem :
(P) inf 8 (f(x) | domg*) = inf sup { <y, f(x) >:y e domg*}

n n y
xeR xeR
Therefore a natural dual problem for (P) is
D) sup{H(y) : y € dom g*}
where the dual objective function is
H(y) = inf{ <y, f(x) >:xe R"}

4.1. THEOREM . Under one of the following two conditions, a strong duality result holds for the
pair of problems (P)— (D) i.e. inf(P) = max(D).
(a) The functions f; are affine and dom g* is closed
(b) domg*c RT and 3xe R" f(x) <0
Proof . (a) Problem (P) can be rewritten equivalently as a linearly convex problem

P inf {8‘(2 | dom g*) : f(x) = z}

X,z
The corresponding Lagrangian is
L(x,z) =8%(zldom g*) + <y, f(x) >~ <y,z> ye R™
and thus the dual objective is
inf L(x,z) =inf <y, f(x) >+ inf {8*(z | dom g*) — <y, z >}
" = };(y) —sup{ <y, : >—0*(z | dom g*))}

=H(y) — 8**(y | dom g*)
=H(y) — 8(y | dom g*) since dom g is closed

Hence, the dual of (P) is
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D) sup{H(y) : y € dom g*}

and since (P) is a convex linearly constrained problem the result follows from standard duality argu-
ments, see e.g. [3].
(b) Let K(x, y) = <y, f(x) >. Then, problem (P) is simply

P) inf sup K(x,y)

& Rﬂ yedomg*

Since the fj are convex and dom g* c IRT, then K(-, y) are convex for all y € dom g*, and K(x, *)

are concave (linear) for all x € R™. By a result in [4], a sufficient condition for the validity of a
strong duality result for a general convex-concave saddle function K(x, y) is :

There is no d € dom g* such that <d,VyK(x,y)>20 Vx e R", Vy e ri dom g*.
Here we have VyK(x, y) = f(x). Hence the above means

There isno d € dom g* such that <d,f(x)>>0Vx e R", Vy € ri dom g*

But the latter is certainly satisfied if there exists X such that f(x) < 0 and thus the result follows.

4.2. REMARK . The above theorem remains true for the constrained nonsmooth program i.e. (P) is
inf{G(x) : x € S} where S is a given non empty convex subset of R™. In that case problem (P) can
be written as :

(P) inf  &*(f(x) | dom g*) + 8(x | S)
xeR"
and the dual problem for (P) is
D) sup{H(y) : y € dom g*}
where the dual objective function is
H(y) = inf{<y, f(x) >+ 8(x | S) : x e R"}

When f(x) are affine, say f(x) =b — Ax, A€ R™" be R™, then it is easy to verify that the dual
problem is given by

(D) sup{yTb—3*(ATylIS): y e dom g*}
This is illustrated below in Example 4.4.
4.3. REMARK . It is possible to derive an alternative representation for the dual objective function

H(y) by using the infimal convolution property, see [3, Theorem 16.1 and 16.4, pp. 140-145]. We
have

H(y) =inf<y, f(x) > = _( Zyifi(')J 0 =— inf { z;(fi‘yi)(zi) : lei = 0}
X i=1 Z]yeens Zm 1= i=



A. BEN-TAL AND M. TEBOULLE 7

where

* zi
. y. f.(—) if y.€ int dom g*
(yp(z) = R £ !
3z 10) if y;=0

Hence an alternative dual problem to (D) is

©) sup  sup {— §(ff (@) : glzi =o}

yedomg* Z]- Zm
The above representation is particularly useful when g* is separable, i.e. g*(y) = S gi(yi). Indeed,

in that case, dom g* = ﬂ?;l dom g¥and therefore problem (1_)) can be written as
m m

D) sup{ Zki(zi) : 2zi=0}
i=1 i=1

where ki(z;) = supyj — (f"‘y,)(z,) is usually easy to compute. As an example take fj(x) = xTle - bj

where the Qj are n X n positive definite matrices. Then, ki(zj) = — (b} Q;1bj)'2 (z’irQilzi)lf2 - bl Q;!

zZj.

4.4. EXAMPLE . Consider the convex constrained nonsmooth problem

(P) {Zla;rx—bl xF 4, < 1j=l,3,...,n—1}
where n is assumed even. Then the dual objective function is

H(y)=-b y+1nf{z a x: xf+x 1Sl je J}
where J = {1, 3,..., n — 1}. But the above can be rewritten as :

H(y) = —b"y+2, inf (xy" &+ x4k
y j+1 )] j+1
jel  (X5xj41)

T T4 .T 2
=-bTy -2 & (" Ay @I +x <D

<1,jel}

jelJ
- bTy _ Z /(yTaj)z + (yTaj+l)2
jel

where @ € R™ is the j-th column of the matrix A = (aj,..., am)". Also, from Example 2.1 we know

that g(z) = Zix1 \/ 1 + z2. Then, the conjugate is

m
g*(y)=z J1-y% Vye domg*=(ye R :-1<y<1)
i=1



8 FIFTH FRENCH-GERMAN CONFERENCE ON OPTIMIZATION

and hence, the dual problem is

(0] sup{ —b'y - 2 \/(yTaj)2+ yath?:—1<y<1)
jel

We may now establish a similar duality result for the approximate smoothed primal problem :

( [0 £,00 ]

(Pe) inf eg

n
xeR

e

€ €

Using the definition of a conjugate function and the fact that g is closed, problem (Pg) can be written
as

inf  sup { <y, f(x)>—eg*(y))

x€ R“ yedomg*

Thus again, a natural dual is obtained by replacing min-max with max-min. This yields the following
dual approximate problem

(Dg) sup{He(y) : y € dom g*}
where

He(y) = H(y) — & g*(y)
and H(y) is the dual objective of the original problem (P).

4.5. THEOREM . Under conditions (a) or (b) of Theorem 4.1 we have
inf(Pg) = max(Dg)

Moreover if g is differentiable, then if x: solves (Pg¢), the optimal solution y; is given by

. ) ()
Y, = Vg -

Proof . (a) Following step by step the proof of Theorem 4.1 (a), the result follows. Also, since
g*(y) =supz(<y,z/e>—g(z/¢€)}, by simple calculus the optimality condition gives the primal-
dual relationships y* = Vg(f(x*) / €).

(b) Let K(x, y) = <y, f(x) > — eg*(y). Since fj are convex and dom g* c ]Ri[1 , then K(-,y) are con-

vex for all y € dom g*, and K(x, -) are concave (since g* convex and € > 0) for all x e R". By
[3, Theorem 37.3, p. 392] a sufficient condition for the validity of a strong duality result for a gen-
eral convex-concave saddle function K is that the convex functions -K(x,.) have no common direc-
tions of recession. By [3, Theorem 37.1, and Corollary 37.21 pp. 391-392] this means that, for all
0# we dom g* ,
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sup sup {K(x, y) - K(x,y +w)} >0

xeR"  Y€ridom g*
Substituting the values of K this means that we have to show that

€ sup {g*(y + w) —g¥*(y))} > inf <w, f(x) >

yéi don:g> xeR"
But from (2.1), the left hand side of the above inequality is exactly (g*0*)(w) and from Lemma 3.1
(g*0*)(w) = 8*(wldom g) = (8*(w | ridom g))
Thus we have to show that Vw # 0 € dom g*

€. sup <t,w>> inf <w,f(x)>
tedomg xeRn

or equivalently that

sup{ <et—f(x),w>:te domg,xe R"} >0
But the later is always satisfied since 0 € dom g and we assumed the existence of a point X such that
f(x)<0. O

4.6. EXAMPLE . Consider problem (P1) given in Example 2.1 with f; given convex. The function

g(z) = ity ‘\’1 + z2. Then, the conjugate is

m
g*(y)=z /l—yiz, Vye domg*={ye Rm:—1SySI}
i=1

Then a perturbed dual is given by

(D1y) sup{H(y)—ez /l—in:—ISySl}
i=1

Clearly the conditions (b) of Theorem 4.5 are satisfied if there is a Slater point for the function f;. The
optimal solution of the dual is given by
fi(xe) .
(ys)i S 1= 1,..., m

[ £x) + e

where x¢ is the optimal solution of the primal. Note that the perturbed solution yg is feasible for the
original dual problem (D).
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4.7. EXAMPLE . Consider problem (P2) given in Example 2.2 with fj given convex. The function

g(z) = log Tiz1 €%. Then, the conjugate is

m m
g*(y) =2 y;logy,, Vye domg*= {yeRm:yzo,Zyi= 1}
i=1 i=1

Then a perturbed dual is given by

m m
(D2), sup {H(y) — ¢ z y; log yi:yZO,ziyi= 1}
i=1 =

Clearly the conditions (b) of Theorem 4.5 are satisfied if there is a Slater point for the functions fj.
The optimal solution of the dual is given by

fitx) /e

€ .
(ye)i = =, i=1,...,m

fi(xg) /e
de

=1

where xg is the optimal solution of the primal. Note that the perturbed solution yg is feasible for the
original dual problem.

In the linear case (fj(x) = a'{x — bj), conditions (a) of Theorem 4.5 are satisfied and for both exam-
ples we obtain

T .o AT
-b'y ifA'y=0
H(y) ={ yERY
—oo  otherwise
where AT = (ay,..., apy). Problems (D1)¢ and (D2), are thus producing two different type of per-
turbed linear programs.
4.8. EXAMPLE . We consider a generalization of Example 2.1. We define F(z) = Z;ZI Fi(z;)
where

Fi(zi) = uj max(0, z;) — 1 inf(0, z;)

where uj, l; are given non negative real numbers. A direct computation shows that F(z) is the reces-

m
sion function of g(y) = z g;(y;) where
i=1

gi(z) = (1 + I min2(0, y;) + u} max2(0, yj)) 112

and the resulting approximate smoothed problem is

. S f,(0)
(P3), inf zegi( J

n i=1 €

xeR
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To construct the dual of (P3¢) we compute the conjugate of g; :

1/2
* 1 .2 1 2
g () = (1 —]—me ©,t) — — max o, ti)]

i Y

then the dual objective function is given by
m
H =HO) -e X g
1=

and the dual problem (D3g) is

(D3g) max{He(y) : ye domg* ={y: —]j<y;<uy;Vi}}

In the linear case (fj(x) = a'li“x — bj) we thus obtain the perturbed dual linear program
m 1/2

max { — b'y—e 2 ( 1 - % minz(O, Y~ iz max 2(0, ti)j }

i=1 A
i

such that
ATy=0 —-j<yj<uyj, i=1,.,m
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