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Preface

This volume contains the proceedmgs of the 13th International Conference on

Application and Theo i Nefs. The aim of the Petri net conferences is to create
a or discussing progress in the application and theory of Petri nets. Typically,

the conferences have 150-200 participants — one third of these coming from industry
while the rest are from universities and research institutions. The conferences always
take place in the last week of June.

The previous conferences were held in Strasbourg, France (1980), Bad Honnef,
Germany (1981), Varenna, Italy (1982), Toulouse, France (1983), Aarhus, Denmark
(1984), Espoo, Finland (1985), Oxford, United Kingdom (1986), Zaragoza, Spain
(1987), Venice, Italy (1988), Bonn, Germany (1989), Paris, France (1990), Aarhus,
Denmark (1991).

The conferences and a number of other Petri net activities are coordinated by a
steering committee with the following members: M. Ajmone Marsan (Italy), J. Billing-
ton (Australia), H.J. Genrich (Germany), C. Girault (France), K. Jensen (Denmark),
G. de Michelis (Italy), T. Murata (USA), C.A. Petri (Germany; Honorary Member),
W. Reisig (Germany), G. Roucairol (France), G. Rozenberg (The Netherlands;
Chairman), M. Silva (Spain),

The 1992 conference is organized by the School of Computing and Management
Sciences at Sheffield City Polytechnic, England. In addition to the conference there is a
tool exhibition and there are four different tutorials (both at the introductory and at the
more advanced levels).

We would like to thank very much all those who submitted papers to the Petri net
conference. 77 papers and project presentations were submitted, and 25 have been
accepted for presentation. Invited lectures are given by G. Balbo (Italy), M. Hennessy
(United Kingdom) and W. Reisig (Germany).

The submitted papers were evaluated by a programme committee with the fol-
lowing members: W. Brauer (Germany), G. Chiola (Italy), G. Cutts (United Kingdom),
F. De Cindio (Italy), R. Devillers (Belgium), M. Diaz (France), U. Goltz (Germany),
T. Hildebrand (France), R. Hopkins (United Kingdom), N. Husberg (Finland),
K. Jensen (Denmark; Chairman), H.C.M. Kleijn (The Netherlands), J. Martinez
(Spain), T. Murata (USA), K. Onaga (Japan), D. Simpson (United Kingdom),
G. Wheeler (Australia), J. Winkowski (Poland), W. Zuberek (Canada). The program
committee meeting took place at GMD, Bonn. We would like to express our gratitude
to the members of the programme committee, and to all the referees who assisted them.
The names of the referees are listed on the following page.

We also thank the organizers at Sheffield City Polytechnic: P. Collingwood,
G. Cutts (Chairman), 1. Jelly, M. Love, R. MacMillan, S. Morton, G. Redfearn and
G. Roberts. Finally, we would like to mention the excellent cooperation with Springer-
Verlag and to thank A. Paysen who handled all the submissions and compiled the final
manuscript.

Aarhus, Denmark Kurt Jensen
April 1992
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Performance Issues in Parallel Programming

Gianfranco Balbo

Dipartimento di Informatica, Universitd di Torino,
corso Svizzera 185, 10149 Torino, Italy
e-mail: balbo@di.unito.it

Abstract. The development of parallel applications requires the availabil-
ity of tools that support their debugging and tuning. GSPN represent a
formalism that is well suited for the construction of formal models of paral-
lel programs that can be used for both validation and evaluation purposes.
The analysis of GSPN models of parallel programs provides the information
that is needed for deciding whether the objectives contained in the specifi-
cations of an application are met and for distributing the computation on
a parallel architecture. In this paper we discuss a methodology for directly
constructing a GSPN model of an application from its code and for deriving
the parameters that are needed for obtaining the optimal allocation of the
components of a parallel application on the computational units of a parallel
architecture. A simple example is used throughout the paper to illustrate the
different steps of the methodology and to show how these GSPN models can
be used to check the efficiency of a parallel application.

1 Introduction

Parallel computers are widely recognized as the equipments capable of meeting the
demands of high performance computing posed by new scientific and real time ap-
plications. Parallel programming is however still difficult because of the lack of tools
that help in developing and debugging new implementations. Computer architec-
tures and language characteristics restrict the class of applications that can be eas-
ily implemented [15] with parallel programs; indeed, concurrency, communication,
synchronization and nondeterminism make the manual assessment of the correctness
and of the efficiency of parallel programs particularly difficult.

The study of the characteristics of an application both from the point of view
of correctness and performance, can be done at different stages of the software life
cycle [27]. For instance, an analysis can be performed at the specification stage to
ensure that the implementation will meet certain real time constraints [19] or to sup-
port the results of rapid prototyping [8]; alternatively, an evaluation can be carried
on after the completion of the implementation to verify whether the results conform
to the original specifications or to assess its efficiency through the computation of
performance indices such as resource consumption indicators [28,16].

* This work has been supported in part by Ministero dell’Universita’ e della Ricerca Sci-
entifica e Tecnologica - 40% Project - and by the Italian National Research Council -
Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo, Grant N. 91.00879.PF69.



In order to perform these tasks efficiently, tools must work on models of the
real application that differ depending on the goals of the analyses. Different repre-
sentations allow to characterize the behaviour of a program with different levels of
detail [34,30,20]. It is however important that these representations be compatible
so that abstract models can be augmented with more detailed descriptions of spe-
cific components to allow a modular and efficient analysis of large programs. In any
case, the choice of the modelling formalism that is used throughout the software life
cycle must easily integrate within the programming environment and must allow the
characterization of both the static and dynamic behaviour of the program by means
of analytic as well as simulation techniques.

Parallel programs are developed to obtain high-performance computing and is
thus a major aspect of their implementations that of allocating their components
on the computational units of parallel architectures in order to maximize their effi-
ciency. Real parallel architectures are however characterized by a limited number of
processors and by a limited degree of connectivity (not every computational unit can
directly communicate with any other unit of the architecture) that constraint their
capabilities. Intuition suggests that processes that are concurrently active should be
allocated on different nodes of a parallel computer in order to exploit parallelism.
Communication among processes can however modify this picture. Indeed, processes
allocated on the same processor communicate through common memory in a very
fast manner. Communications among processes allocated on different processors, on
the other hand, take place through relatively slow links. It follows that when map-
ping a parallel program on a parallel architecture, several counteracting effects must
be taken into accounts. For instance, processes that are simultaneously active and
that interact very strongly may be better allocated on the same processor trading
the loss of parallelism with the reduction of communication latency. On the contrary,
processes with very loose interactions can be easily allocated on separate processors.

These considerations are usually formalized as an optimization problem whose
objective function accounts for the communication and processing costs. The form
of the objective function depends on the structure of the parallel program and the
coefficients depend on the amount of data exchanged among processes, on their
mutual distance, and on the amount of local processing performed by each processor
[23].

To solve this problem, many different models of parallel programs have been
presented in the literature, typical examples being the task graph [18] and the com-
munication graph [33] in which nodes represent processes and arcs correspond to
communications and/or synchronizations. A great effort has been devoted to devise
methods for obtaining the optimal allocation strategy [7,31], but little or no effort
has been devoted to the problem of constructing these models starting from real
programs. _

In this paper we show how Generalized Stochastic Petri Net (GSPN) [3] models
can be used to estimate characteristic parameters of parallel programs, and thus to
construct the corresponding communication graphs, with the possibility of exploiting
all the classical analysis results based on GSPN for validating and evaluating these
applications. In particular, we address the problem of constructing a GSPN model
of the program flow, the possibility of doing this automatically, and the trade-off
between automatic generation of the model, efficiency of the analysis and usefulness



of the results. We consider the impact of including control variables in the models
and the way of representing communication among processes. Finally we discuss the
choice of which features to include in the model, i.e. the abstraction level of the
representation, that strongly depends on the type of analysis we want to perform.

To apply these techniques, we focus our attention on parallel languages that allow
applications to be organized as sets of cooperating tasks using a message passing
paradigm of the rendez-vous type. Major examples of languages of this type are
Occam, CSP and Ada. We shall also take into account the case of communications
of the non-blocking type, like those allowed by CsTools which is a programming
environment available on. Meiko’s [25] parallel computers.

The work reported in this paper is part of a project for the definition and the
implementation of an integrated programming environment for the development of
parallel applications organized as sets of parallel processes that interact by message
passing following the CSP [21] paradigm. A single formalism based on GSPN is
used whithin this environment for specifying, designing, implementing, testing, and
evaluating parallel programs. Detailed information on this project can be found in
[5,6,22].

The balance of the paper is the following. Section 2 discusses the possibility of us-
ing static analysis techniques for characterizing the behaviour of parallel programs.
Section 3 describes the transformation steps that must be undertaken to produce the
desired model starting from the code of parallel programs. Section 4 overviews the
graph models that are used to solve the problem of mapping parallel programs on
parallel architectures. Section 5 describes how the communication graph of a parallel
program can be constructed starting from the solution of the GSPN representation
of the same application. Section 6 indicates how the model of a parallel program
together with the indications of its allocation on a parallel architecture can be used
to check the efficiency of the implementation. Section 7 concludes the paper with in-
dications on the problems that are still open and with a discussion of future research
efforts that will be undertaken in this field.

2 Static Analysis of Parallel Programs

Two types of strategies may be followed to infer the properties of parallel programs
and to obtain their optimal execution. Programs that exhibit very dynamic be-
haviours may be run on representative sets of input data and under the control of
dynamic allocation policies. The results obtained from these sample executions are
used to identify the properties of these programs and the observed balance of work-
loads and communications may be interpreted as a measure of the quality of the
allocation policies. Programs that are instead characterized by an internal structure
may be analyzed independently of their inputs to identify their properties and may
be optimized a priori (i.e., statically) in order to make the best use of the capabilities
of the architecture.

Although appealing, the first strategy may be impractical because of the diffi-
culty of choosing representative test cases, of measuring the behaviour of a parallel
application, and of the necessity of devising fast decision policies that allocate re-
sources and restructure applications without forcing the programs to wait for long



times while the choices are made. It is thus quite conceivable to follow a static ap-
proach in which high optimization costs are justified by the time-critical aspects of
the applications and in which a careful characterization of the computation may
yield important advantages when the program is repeatedly executed.

The static analysis of an application consists in characterizing a program with
a formal model that is subsequently studied to infer the properties of the program
itself. This model is used first to analyze the correctness of the program and subse-
quently to assess its efficiency. Since during static analysis nothing is known about
the run-time behaviour of the program (for example its input data), no assumption
is made on which of the possible execution paths is actually followed by the pro-
gram. Static analysis thus tends to account for many program behaviours that would
never occur in real executions. Three types of anomalies may be detected by static
analysis in a distributed/parallel environment [29]: unconditional faults, conditional
faults, and nonfaults. Unconditional faults correspond to errors that will definitely
occur during program executions. Conditional faults represent instead errors whose
occurrence either depends on non deterministic choices or on specific sets of input
data. Nonfaults, finally, are errors which are reported by the static analyzer although
they will never occur during program executions: nonfaults are detected when the
correct behaviours of programs are ensured by control variables that are ignored
during static analysis. Static analysis thus provides a pessimistic picture of program
behaviour that must be kept under control to avoid that issuing too many warnings
for unverified events make the programmers completely disregard the whole result
of the study.

Once a parallel program is considered correct it must also run fast. It is thus
of paramount importance to be able to estimate the performance of the adopted
solution. Again in the case of a static approach, this optimization must relay on
the formal model of the program and must disregard any information on the in-
put data. A probabilistic interpretation of the formal model can be convenient to
concisely account for the many possible execution of the program using probability
distributions.

GSPN have been chosen as the formalism for the definition of the formal model
that is used for static analysis because of their capability of supporting both vali-
dation and performance evaluation of real systems using basically the same model
[26,4]. Moreover, GSPN are also particularly well suited for the study considered in
this paper because of the possibility that they offer of representing both the charac-
teristics of the architecture (the hardware) and the peculiarities of the program (the
software) of parallel computers [2,1].

3 Modelling CSP-like programs

The parallel programs we consider in this paper conform to a CSP style; a typical
application is organized as a set of procedures that include statements equivalent to
the SEQ, ALT, PAR, if, while, repeat, for, ? and ! of CSP. The two operators
? and ! are used to indicate inputs and outputs; communications are of the rendez-
vous style. Communication among processes is assumed to happen through declared
common channels. This is the facility provided by Occam [24] and it represents a
generalization of the basic mechanism of CSP.



We assume that there is a process that initiates the concurrent execution of
a certain number of processes. Processes can be activated by a PLACED PAR
instruction or by any PAR instruction contained in an already activated process.
In the command PAR A B ENDPAR, A and B are either simple SEQ commands
or whole processes. In the second case, the execution of the command corresponds
to instantiating and activating a copy of each process. All these features are present
in the language that we used for the implementation of the examples. It represents
a parallel extension of C and is called DISC [22].

Having discussed the type of languages we are interested in, we must decide
which features of a program we want to represent in the model. It is important
to remark that GSPN could account for all the details of a real parallel program.
This approach would lead to enormous nets, cluttered with lots of details, with huge
reachability graphs, difficult to analyze, and providing results problematic to inter-
pret. The choice of what to model must be driven by the type of results we want to
obtain. Each program can be represented with different levels of abstraction yielding
different consequences in terms of complexity and accuracy of their analysis. In par-
ticular, it is clear that, if we want to study deadlocks, all process synchronizations
must be carefully described; similarly, if the objective of our study is the analysis
of the communications among processes, all the possible rendez-vous must be taken
into consideration. In what follows we shall describe different possible choices of the
level of abstraction at which we want to represent our programs.

3.1 Modelling process schemes

A first choice is that of including in the model control flow, process activation and
communication statements only [34,30,17,13]. In particular we model every single
communication statement as well as each PAR, SEQ, ALT, if, while, repeat,
and for statement that includes in its body a communication. All the sequences
that do not include any of these instructions are represented in the GSPN as timed
transitions whose associated delays depend on the length of their executions.

Using this level of abstraction, parallel programs are translated into GSPN mod-
els according to the following procedure:
1. A set of process schemes is derived from a parallel program consisting of proce-
dures by coalescing into single macrostatements all those sequences of statements
that do not include any communication or any PAR with named processes.
2. Each process scheme yields a GSPN model: named processes are represented in the
net with single transitions (i.e., they are not yet substituted with their translations),
communication statements are represented as immediate transitions (thus disregard-
ing any type of synchronization connected with the rendez-vous), and macrostate-
ments are substituted by timed transitions (whose associated delay is an estimate
of their execution time).
3. Starting from the initial process, all process names are expanded with a copy of
their corresponding GSPN models. The substitution continues in depth-first mode
until all the names have been replaced.
4. Pairs of communication transitions that belong to different processes and that
represent their (mutual) communication are fused to concretely represent the syn-
chronization deriving from the rendez-vous protocol.
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Fig.1. A “printer-spooler” system

We shall present this translation process in a rather informal way with the help
of a simple example. The program used as an example in this section is a “printer-
spooler” that accepts the print requests of two user programs P; and P;. A scheme of
the structure of the Spooler and of the user programs P; and P; is depicted in Fig. 1,
where Chan; and P, Sp (Chan; and P;Sp) are the channels used for communication
between the Spooler and process P, (P;).

The corresponding Occam-like code is presented in Fig. 2. Process P; (P;) ex-
ecutes a loop of computation and requests to print the results. If process Py (P;)
wants to send a sequence of packets to be printed to the Spooler, it first sends a
message on channel Chan; (Chan;) containing a request to transmit k (n) packets
and then enters a loop where at each iteration one of the k (n) packets is sent on
channel P, Sp (P;Sp). The Spooler process executes a loop (the external one) look-
ing for print requests coming from the two programs. When it receives a request for
k(n) packets from Chan, (Chan;) it enters a reception loop of k(n) messages from
P]_Sp (stp).

Main P1
while true while true
ALT ( P1 computes pckt[1..k] )
Chan;, 7 x: Chan, ' k
for i=x-1 downto 0 for i=k-1 downto 0
P, Sp? pckt P, Sp? pcktli]
( Print pckt ) endfor
endfor endwhile
Chanz 7 x:
for i= x-1 downto 0 P2
P,Sp? pckt while true
( Print pckt ) ( P2 computes pckt[1..n] )
endfor Chana ' n
endwhile for i=n-1 downto 1
P, Sp? pcktli]
endfor
endwhile

Fig. 2. A spooler system code

The first translation step consists of generating the net representing the con-
trol structure. This task requires an abstraction phase that eliminates all the parts



that are irrelevant with respect to control. This can be a by-product of the compiler
of the language. For instance, in our case we use the process scheme generated by
the DISC compiler [22]. The code presented in Fig. 2 is already in a form where only
control structures that include PAR and communications have been kept. All other
operations are summarized within angle brackets.

The second translation step consists of producing a first GSPN structure from
the process scheme. Each process is considered separately. The basic translation rules
are shown in Fig. 3, where A, B and A; are used to indicate either named processes or
sequences of statements. All comments that follow refer to this figure. Each process
can be characterized by a GSPN with one input place and one output place; the
same is true for any construct of our CSP-like application.

The translation of the process definition is shown in (a). In (b) it is shown the
translation of an if statement: the two alternatives are represented by a non deter-
ministic choice (two immediate transitions with a common input place). If nothing
is known about the relative frequencies of the outcomes of the condition evaluation,
equal weights are assigned to the two immediate transitions. The case statement can
be translated in the same way, yielding a structure with as many parallel sequences
as there are cases. The while statement is instead depicted in (c); the same discus-
sion as for the if statement applies. In the PAR statement (d) the timed transition
represents the time needed to activate the individual branches of the PAR. The
final transition of this subnet represents the fact that the PAR completes its execu-
tion only when this is true for all branches: it is an immediate transition because it
expresses a logical condition. The translation of the ALT statement is shown in (e),
ALT is modeled as a non deterministic choice among possible communications; the
G; are communication statements (input guards) or simple conditions and are thus
represented as immediate transitions. In the SEQ statement (f) the output place of
the translation of A; is superposed with the input place of the translation of A4;4;.
Composite statements (corresponding to angle brackets in the program scheme) are
represented by timed transitions with one input and one output place (g). The pres-
ence of a communication is captured in the model by introducing an immediate
transition (h).

The automatic implementation of these rules is quite straightforward as it cor-
responds to simple modifications of any algorithm that translates a program into
a flowchart. Applying these translation rules mechanically, many useless immediate
transitions and places are generated. For example in (b) the subnet comprising the
output places of 7(A4) and 7(B) the output place of the if statement and the two
immediate transitions connected to them can be actually substituted by a single
place which is the output place of the if. The same is true also in the case of the
ALT statement. Moreover, all sequences of immediate transitions of the 1-in 1-out
type can be coalesced into a single one (of course this is not true if a transition
represents communication, since it will be manipulated during the fourth step of
the procedure). Removing useless transitions corresponds to the application of well
known reduction techniques [32,9].

The third translation step consists of replacing all transitions which represent
named processes with their net representations. The substitution can be easily per-
formed by superimposing the input (output) place of the process equivalent subnet



