PROGRAMMER'S REFERENCE LIBRARY E

MICROSOFTe
DOWS..

.
AS353%%Y
BARRN

Microsoft

Windows 3.

Programmer’s Reference

Volume 3

Messages,
Structures,
and Macros




Windows 3.1

Programmer’s Reference

Microsoft =~

\iolume 3
Messages, Structures, and M @? ﬁ

Y R E 8 §
®



PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright ©1987-1992 Microsoft Corporation. All rights reserved.

Information in this document is subject to change without notice and does not represent a commitment on the part of Microsoft
Corporation. The software, which includes information contained in any databases, described in this document is furnished under
a license agreement or nondisclosure agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the license or nondisclosure agreement. No part of this
manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying and recording, for
any purpose without the express written permission of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows programmer’s reference.
p. cm.
Includes indexes.
Contents: v. 1. Overview -- v. 2. Functions -- v. 3. Messages,
structures, macros -- v. 4. Resources.
ISBN 1-55615-453-4 (v. 1). -- ISBN 1-55615-463-1 (v. 2). -- ISBN
1-55615-464-X (v. 3). -- ISBN 1-55615-494-1 (v. 4)
1. Microsoft Windows (Computer program) I. Microsoft
Corporation.
QA76.76.W56M532 1992
005.4'3--dc20 91-34199
CIp

Printed and bound in the United States of America.

12 3456789 MMLT7865432

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing Corporation.
Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand +

British Cataloging-in-Publication Data available.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright ©19%1 International eface Corporation. All rights reserved.

Copyright ©1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New Century Schoolbook, Times,
and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe® and PostScript® are registered trademarks of Adobe Systems, Inc. Apple® Macintosh® and TrueType® are registered trade-
marks of Apple Computer, Inc. PANOSE™ is a trademark of ElseWare Corporation. Epson® and FX® are registered trademarks of
Epson America, Inc. Hewlett-Packard® HP® LaserJet® and PCL® are registered trademarks of Hewlett-Packard Company. IBM® is a
registered trademark of International Business Machines Corporation. ITC Zapf Chancery® and ITC Zapf Dingbats® are registered
trademarks of International Typeface Corporation. Helvetica® New Century Schoolbook® Palatino® Times® and Times Roman® are
registered trademarks of Linotype AG and/or its subsidiaries. CodeView® Microsoft® MS® MS-DOS® and QuickC® are registered
trademarks and QuickBasic™ and Windows™ are trademarks of Microsoft Corporation. Arial® and Times New Roman® are
registered trademarks of Monotype Corporation PLC. Okidata® is a registered trademark of Oki America, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of AGFA Compugraphic Division
of Agfa Corporation.

U.S. Patent No. 4974159

Document No. PC28917-0492



Introduction

This manual, Microsoft Windows Programmer’s Reference, Volume 3, describes
the data types, messages, structures, macros, and printer escapes supported by the
Microsoft® Windows™ operating system. In addition, dynamic data exchange
(DDE) transactions, File Manager events, raster-operation codes, virtual-key
codes, and character tables are presented.

Organization of This Manual

Following are brief descriptions of the chapters and appendixes in this manual:

Chapter 1, “Data Types,” describes the keywords that define the size and mean-
ing of parameter and return values associated with the Windows application
programming interface (API).

Chapter 2, “Messages,” describes formatted window messages, through which
the Windows operating system communicates with applications, and notifica-
tion messages, which notify a control’s parent window of actions that occur
within the control.

Chapter 3, “Structures,” defines the data structures associated with the func-
tions that are part of the Windows APL.

Chapter 4, “Macros,” describes the purpose and defines the parameters of mac-
ros used to help manipulate data in Windows applications.

Chapter 5, “Printer Escapes,” lists printer escapes for the Windows operating
system.

Chapter 6, “Dynamic Data Exchange Transactions,” describes the transactions
sent by the Dynamic Data Exchange Management Library (DDEML) to an ap-
plication’s dynamic data exchange (DDE) callback function. The transactions
notify the application of DDE activity that affects the application.

Chapter 7, “File Manager Events and Messages,” provides descriptions of the
events and menu commands File Manager sends to communicate with a File
Manager extension dynamic-link library (DLL). The chapter also describes mes-
sages the DLL can send File Manager to retrieve information.

Chapter 8, “Control Panel Messages,” lists the messages Control Panel sends to
communicate with a Control Panel DLL.



Vi Microsoft Windows Programmer’s Reference

Chapter 9, “Common Dialog Box Messages,” describes the messages a com-
mon dialog box can send to notify applications that the user has made or
changed a selection in the dialog box.

Chapter 10, “Installable Driver Messages,” lists the messages the Windows
operating system sends to notify installable drivers about specific events.

Appendix A, “Binary and Ternary Raster-Operation Codes,” lists and describes
the binary and ternary raster operations used by the graphics device interface
(GDI).

Appendix B, “Virtual-Key Codes,” shows the symbolic constant names,
hexadecimal values, and keyboard equivalents for Windows virtual-key codes.

Appendix C, “Character Tables,” illustrates the Windows character set, the
Symbol character set, and the OEM character set used by the Windows operat-
ing system.

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a

resource-definition statement or function name (MENU or
CreateWindow), a command, or a command-line option
(/mod). You must type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the

(]
I

actual value. For example, the statement SetCursorPos(X,Y)
requires you to substitute values for the X and Y parameters.

Enclose optional parameters.
Separates an either/or choice.
Specifies that the preceding item may be repeated.

BEGIN Represents an omitted portion of a sample application.

END



Introduction vii

In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key combina-
tions—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.



Contents

Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9
Chapter 10
Appendix A

e ey R e e SR S S v
OrcamzationofIhisManual.. ... 00 e e v
Bociment ComyEIUDaNG o i st ek vi
Data Types 1
Messages 1
2o WihdoWMeSSages. ... . e 14
226 ANeWIICAHBEIMESNADES 1 0 e e 213
Structures 229
Macros 429
Printer Escapes 449
Dynamic Data Exchange Transactions 513
File Manager Events and Messages 529
Jir s Bile Manapetbvenls ol o w o n e 531
7.2 - hleMandperiVIErsages: s i e R e s 534
Control Panel Messages 541
Common Dialog Box Messages 551
Installable Driver Messages 559
Binary and Ternary Raster-Operation Codes CYA|
Asl s HBmary RasteriOperations Bnsnd MEagedsmnaini s s 573
A2 Sidicinary Raster@perations S e i el i e 576



iv Microsoft Windows Programmer’s Reference

Appendix B Virtual-Key Codes 587
Appendix C Character Sets 593
Cilns ANSTCRAtaCteESel v i v it s s st s o e e 596
€2 SYlbolChATHeIer el . e e e 597
G35 OBMIC BAtaCIen Sele i ih o s e ik ol ris s v ess v bbl 598




Data Types

Chapter 1

AlphabeticReference ...« . n






T T———

Chapter 1 Data Types 3

The data types in this chapter are keywords that define the size and meaning of
parameters and return values associated with functions for the Microsoft Windows
operating system, version 3.1. The following table contains character, integer, and
Boolean types; pointer types; and handles. The character, integer, and Boolean
types are common to most C compilers. Most of the pointer-type names begin
with a prefix of P, N (for near pointers), or LP (for long pointers). A near pointer
accesses data within the current data segment, and a long pointer contains a 32-bit
segment:offset value. A Windows application uses a handle to refer to a resource
that has been loaded into memory. Windows provides access to these resources
through internally maintained tables that contain individual entries for each
handle. Each entry in the handle table contains the address of the resource and a
means of identifying the resource type.

The Windows data types are defined in the following table:

Type Definition

ABORTPROC 32-bit pointer to an AbortProc callback function.

ATOM 16-bit value used as an atom handle.

BOOL 16-bit Boolean value.

BYTE 8-bit unsigned integer. Use LPBYTE to create
32-bit pointers. Use PBYTE to create pointers
that match the compiler memory model.

CATCHBUF[9] 18-byte buffer used by the Catch function.

COLORREF 32-bit value used as a color value.

DLGPROC 32-bit pointer to a dialog box procedure.

DWORD 32-bit unsigned integer or a segment:offset
address. Use LPDWORD to create 32-bit
pointers. Use PDWORD to create pointers that
match the compiler memory model.

FARPROC 32-bit pointer to a function.

FNCALLBACK 32-bit value identifying the DdeCallback func-
tion. Use PFNCALLBACK to create pointers
that match the compiler memory model.

FONTENUMPROC 32-bit pointer to an EnumFontsProc callback
function.

GLOBALHANDLE 16-bit value used as a handle to a global memory
object.

GNOTIFYPROC 32-bit pointer to a NotifyProc callback function.

GOBJENUMPROC 32-bit pointer to a EnumObjectsProc callback
function.

GRAYSTRINGPROC 32-bit pointer to a GrayStringProc callback

function.



4 Microsoft Windows Programmer’s Reference

Type Definition

HANDLE 16-bit value used as a general handle. Use
LPHANDLE to create 32-bit pointers. Use
SPHANDLE to create 16-bit pointers. Use
PHANDLE to create pointers that match the
compiler memory model.

HCURSOR 16-bit value used as a cursor handle.

HFILE 16-bit value used as a file handle.

HGDIOBJ 16-bit value used as a graphics device interface
(GDI) object handle.

HGLOBAL 16-bit value used as a handle to a global memory
object.

HHOOK 32-bit value used as a hook handle.

HKEY 32-bit value used as a handle to a key in the regis-
tration database. Use PHKEY to create 32-bit
pointers.

HLOCAL 16-bit value used as a handle to a local memory
object.

HMODULE 16-bit value used as a module handle.

HOBJECT 16-bit value used as a handle to an OLE object.

HWND 16-bit value used as a handle to a window.

HOOKPROC 32-bit pointer to a hook procedure.

HRSRC 16-bit value used as a resource handle.

LHCLIENTDOC 32-bit value used as a handle to an OLE client
document.

LHSERVER 32-bit value used as a handle to an OLE server.

LHSERVERDOC 32-bit value used as a handle to an OLE server
document.

LINEDDAPROC 32-bit pointer to a LineDDAProc callback func-
tion.

LOCALHANDLE 16-bit value used as a handle to a local memory
object.

LONG 32-bit signed integer.

LPABC 32-bit pointer to an ABC structure.

LPARAM 32-bit signed value passed as a parameter to a
window procedure or callback function.

LPBI 32-bit pointer to a BANDINFOSTRUCT struc-
ture.

LPBITMAP 32-bit pointer to a BITMAP structure. Use

NPBITMAP to create 16-bit pointers. Use PBIT-
MAP to create pointers that match the compiler
memory model.



Chapter 1 Data Types

5

Type

Definition

LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO

LPBITMAPINFOHEADER

LPCATCHBUF
LPCBT_CREATEWND

LPCHOOSECOLOR
LPCHOOSEFONT
LPCLIENTCREATESTRUCT

LPCOMPAREITEMSTRUCT

LPCPLINFO

LPCREATESTRUCT
LPCSTR
LPCTLINFO

LPCTLSTYLE

LPDCB
LPDEBUGHOOKINFO

32-bit pointer to a BITMAPCOREHEADER
structure. Use PBITMAPCOREHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPCOREINFO struc-
ture. Use PBITMAPCOREINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a BITMAPFILEHEADER
structure. Use PBITMAPFILEHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPINFO structure. Use
PBITMAPINFO to create pointers that match
the compiler memory model.

32-bit pointer to a BITMAPINFOHEADER
structure. Use PBITMAPINFOHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a CATCHBUF array.

32-bit pointer to a CBT_CREATEWND struc-
ture.

32-bit pointer to a CHOOSECOLOR structure.
32-bit pointer to a CHOOSEFONT structure.

32-bit pointer to a CLIENTCREATESTRUCT
structure.

32-bit pointer to a COMPAREITEMSTRUCT
structure. Use PCOMPAREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a CPLINFO structure. Use
PCPLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CREATESTRUCT structure.
32-bit pointer to a nonmodifiable character string.
32-bit pointer to a CTLINFO structure. Use

PCTLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CTLSTYLE structure. Use
PCTLSTYLE to create pointers that match the
compiler memory model.

32-bit pointer to a DCB structure.

32-bit pointer to a DEBUGHOOKINFO
structure.



Microsoft Windows Programmer’s Reference

Type

Definition

LPDELETEITEMSTRUCT

LPDEVMODE

LPDEVNAMES
LPDOCINFO
LPDRAWITEMSTRUCT
LPDRIVERINFOSTRUCT

LPDRVCONFIGINFO

LPEVENTMSG

LPDRIVERINFOSTRUCT

LPFINDREPLACE
LPFMS_GETDRIVEINFO

LPFMS_GETFILESEL

LPFMS_LOAD
LPHANDLETABLE

LPHELPWININFO

LPINT

LPKERNINGPAIR

32-bit pointer to a DELETEITEMSTRUCT
structure. Use PDELETEITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a DEVMODE structure. Use
NPDEVMODE to create 16-bit pointers. Use
PDEVMODE to create pointers that match the
compiler memory model.

32-bit pointer to a DEVNAMES structure.
32-bit pointer to a DOCINFO structure.

32-bit pointer to a DRAWITEMSTRUCT struc-
ture. Use PDRAWITEMSTRUCT to create
pointers that match the compiler memory model.
32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a DRVCONFIGINFO struc-
ture. Use PDRVCONFIGINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a EVENTMSG structure. Use
NPEVENTMSG to create 16-bit pointers. Use
PEVENTMSG to create pointers that match the
compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a FINDREPLACE structure.
32-bit pointer to a FMS_GETDRIVEINFO
structure.

32-bit pointer to a FMS_GETFILESEL struc-
ture.

32-bit pointer to a FMS_LOAD structure.
32-bit pointer to a HANDLETABLE structure.
Use PHANDLETABLE to create pointers that
match the compiler memory model.

32-bit pointer to a HELPWININFO structure.
Use PHELPWININFO to create pointers that
match the compiler memory model.

32-bit pointer to a 16-bit signed value. Use PINT
to create pointers that match the compiler
memory model.

32-bit pointer to a KERNINGPAIR structure.



Chapter 1 Data Types

i

Type

Definition

LPLOGBRUSH

LPLOGFONT

LPLOGPALETTE

LPLOGPEN

LPLONG

LPMAT2
LPMDICREATESTRUCT

LPMEASUREITEMSTRUCT

LPMETAFILEPICT
LPMETARECORD

LPMOUSEHOOKSTRUCT

LPMSG

LPNCCALCSIZE_PARAMS

LPNEWCPLINFO

32-bit pointer to a LOGBRUSH structure. Use
NPLOGBRUSH to create 16-bit pointers. Use
PLOGBRUSH to create pointers that match the
compiler memory model.

32-bit pointer to a LOGFONT structure. Use
NPLOGFONT to create 16-bit pointers. Use
PLOGFONT to create pointers that match the
compiler memory model.

32-bit pointer to a LOGPALETTE structure.
Use NPLOGPALETTE to create 16-bit point-
ers. Use PLOGPALETTE to create pointers that
match the compiler memory model.

32-bit pointer to a LOGPEN structure. Use
NPLOGPEN to create 16-bit pointers. Use
PLOGPEN to create pointers that match the com-
piler memory model.

32-bit pointer to a 32-bit signed integer. Use
PLONG to create pointers that match the com-
piler memory model.

32-bit pointer to a MAT?2 structure.

32-bit pointer to an MDICREATESTRUCT
structure.

32-bit pointer to a MEASUREITEMSTRUCT
structure. Use PMEASUREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a METAFILEPICT structure.
32-bit pointer to a METARECORD structure.
Use PMETARECORD to create pointers that
match the compiler memory model.

32-bit pointer to a MOUSEHOOKSTRUCT
structure.

32-bit pointer to an MSG structure. Use NPMSG
to create 16-bit pointers. Use PMSG to create
pointers that match the compiler memory model.
32-bit pointer to an NCCALCSIZE_PARAMS
structure.

32-bit pointer to an NEWCPLINFO structure.
Use PNEWCPLINFO to create pointers that
match the compiler memory model.



8 Microsoft Windows Programmer’s Reference

Type Definition

LPNEWTEXTMETRIC 32-bit pointer to a NEWTEXTMETRIC struc-
ture. Use NPNEWTEXTMETRIC to create
16-bit pointers. Use PNEWTEXTMETRIC to
create pointers that match the compiler memory
model.

LPOFSTRUCT 32-bit pointer to an OFSTRUCT structure. Use
NPOFSTRUCT to create 16-bit pointers. Use
POFSTRUCT to create pointers that match the
compiler memory model.

LPOLECLIENT 32-bit pointer to OLECLIENT structure.

LPOLECLIENTVTBL 32-bit pointer to OLECLIENTVTBL structure.

LPOLEOBJECT 32-bit pointer to OLEOBJECT structure.

LPOLEOBJECTVTBL 32-bit pointer to OLEOBJECTVTBL structure.

LPOLESERVER 32-bit pointer to OLESERVER structure.

LPOLESERVERDOC 32-bit pointer to OLESERVERDOC structure.

LPOLESERVERDOCVTBL 32-bit pointer to OLESERVERDOCVTBL
structure.

LPOLESERVERVTBL 32-bit pointer to OLESERVERVTBL structure.

LPOLESTREAM 32-bit pointer to OLESTREAM structure.

LPOLESTREAMVTBL 32-bit pointer to OLESTREAMVTBL structure.

LPOLETARGETDEVICE 32-bit pointer to OLETARGETDEVICE struc-
ture.

LPOPENFILENAME 32-bit pointer to OPENFILENAME structure.
LPOUTLINETEXTMETRIC 32-bit pointer to an OUTLINETEXTMETRIC
structure.

LPPAINTSTRUCT 32-bit pointer to a PAINTSTRUCT structure.
Use NPPAINTSTRUCT to create 16-bit point-
ers. Use PPAINTSTRUCT to create pointers
that match the compiler memory model.

LPPALETTEENTRY 32-bit pointer to a PALETTEENTRY structure.

LPPOINT 32-bit pointer to a POINT structure. Use
NPPOINT to create 16-bit pointers. Use
PPOINT to create pointers that match the com-
piler memory model.

LPPOINTFX 32-bit pointer to a POINTFX structure.

LPPRINTDLG 32-bit pointer to a PRINTDLG structure.

LPRASTERIZER_STATUS 32-bit pointer to a RASTERIZER_STATUS
structure.

LPRECT 32-bit pointer to a RECT structure. Use

NPRECT to create 16-bit pointers. Use PRECT
to create pointers that match the compiler
memory model.



Chapter 1 Data Types

Type Definition

LPRGBQUAD 32-bit pointer to a RGBQUAD structure.

LPRGBTRIPLE 32-bit pointer to a RGBTRIPLE structure.

LPSEGINFO 32-bit pointer to a SEGINFO structure.

LPSIZE 32-bit pointer to a SIZE structure. Use NPSIZE
to create 16-bit pointers. Use PSIZE to create
pointers that match the compiler memory model.

LPSTR 32-bit pointer to a character string. Use NPSTR
to create 16-bit pointers. Use PSTR to create
pointers that match the compiler memory model.

LPTEXTMETRIC 32-bit pointer to a TEXTMETRIC structure.
Use NPTEXTMETRIC to create 16-bit point-
ers. Use PTEXTMETRIC to create pointers that
match the compiler memory model.

LPTTPOLYCURVE 32-bit pointer to a TTPOLY CURVE structure.

LPTTPOLYGONHEADER 32-bit pointer to a TTPOLYGONHEADER
structure.

LPVOID 32-bit pointer to an unspecified type.

LPWINDOWPLACEMENT 32-bit pointer to a WINDOWPLA CEMENT
structure. Use PWINDOWPLA CEMENT to
create pointers that match the compiler memory
model.

LPWINDOWPOS 32-bit pointer to a WINDOWPOS structure.

LPWNDCLASS 32-bit pointer to a WNDCLASS structure. Use
NPWNDCLASS to create 16-bit pointers. Use
PWNDCLASS to create pointers that match the
compiler memory model.

LPWORD 32-bit pointer to a 16-bit unsigned value. Use
PWORD to create pointers that match the com-
piler memory model.

LRESULT 32-bit signed value returned from a window pro-
cedure or callback function.

MFENUMPROC 32-bit pointer to an EnumMetaFileProc call-
back function.

NEARPROC 16-bit pointer to a function.

OLECLIPFORMAT 16-bit value used as a standard clipboard format.

PATTERN Equivalent to the LOGBRUSH structure. Use
LPPATTERN to create 32-bit pointers. Use
NPPATTERN to create 16-bit pointers. Use
PPATTERN to create pointers that match the
compiler memory model.

PCONVCONTEXT 32-bit pointer to a CONVCONTEXT structure.

PCONVINFO 32-bit pointer to a CONVINFO structure.



