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Preface to the second edition

I have made a number of changes for the second edition, which make the book
more historical. The most significant of these is the new chapter on Islamic
investigations of the parallel postulate, which replaces some material on the
Gree' treatment of incommensurability. This not only does more justice to the
historical story, but helps to explain how the postulate can be investigated at
all. I would particularly like to draw the reader’s attention to two recent books
on the subject: K. Jaouiche, La théorie des paralléles en pays d’Islam (1986),
which contains French translations of many original sources, and B. A.
Rosenfeld, 4 history of non-Euclidean geometry (1989). I am most grateful to
Abe Shenitzer for supplying me with a copy of the galley proofs of his English
translation of Rosenfeld’s book, which has a very detailed account of non-
Euclidean geometry in Islam (among other topics). The work of Rosenfeld and
Jaouiche means that for the first time we are in the position of having
translations and thorough accounts of Islamic contributions in this area based
on original sources, and I have happily made use of them.

I have taken the opportunity to correct a number of small mistakes, and to
supply more references to original sources. The availability of primary sources
in translation has also been increased somewhat with the publication of
J. Fauvel and J. J. Gray (eds.), The history of mathematics—a reader
(Macmillan, 1987). Finally, I would like to thank those who responded, in the
spirit of my earlier invitation, with critical and helpful comments, and to
repeat that invitation here.

Milton Keynes JJ.G.
1988



Preface to the first edition

I hope in this book to say something:about mathematics, what it is and how it
has been done. I shall discuss Greek and modern geometry, in particular what
came to be known as the problem of parallels, that ‘blot on geometry’ as
Saville* called it in 1621. The problem is this: if a line meets a vertical line
obliquely, must it necessarily meet any horizontal line-as well? Stated as
simply as that it may sound trivial, but the charm of the problem is that
although it can be stated in classical terms it cannot be solved without a
dramatic change in fundamental ideas. Its resolution is elusive, difficult, and
surprising. I shall pursue the matter further and discuss Einstein’s theories of
relativity, both special and general, and modern ideas of the shape of the
universe.

The approach I have taken is largely historical and chronological. I have
not avoided discussing difficult problems—indeed to have done so would be to
have sacrificed my objective—but I have assumed no specialist mathematical
knowledge. A working familiarity with simple equations and the elements of
trigonometry, such as students of science and engineering possess, is all that is
needed. It is my hope that the study of past insights into a problem provides as
valid a way into mathematics as the polished answers we now seem to regard
as best. By using the history we can analyse problems, exposing and discussing
difficulties and confusions as they arise, and thus learn about mathematics
itself, and in part this book is an attempt to understand mathematics as a
dynamic activity. We shall often encounter connections betwecn mathematics,
philosophy, and truth, which run as subsidiary themes throughout. However,
this is not strictly a history book. I have not hesitated to abandon the history
when the thread of mathematics runs thin or turns aside from the main subject.
The reader should not feel it necessary to read every word of the book, but
should select and skip as fancy suggests.

The book begins with early Greek mathematics, the Eastern legacy, and the
transition to deductive and geometric thinking. Then we encounter parallels.
The properties and problem of parallels were well formulated by the time of
Euclid, and we start by looking at Greek and later Arab approaches. The
second part of the book takes the story from Wallis, Saccheri, and Lambert to
its resolution by Gauss, Lobachevskii, Bolyai, Riemann, and Beltrami. In
contrast to most authors, who see the developments as primarily founda-
tional, I see them as concerned more with the concepts and methods of
geometry, and so I shall sketch the background of the nineteenth-century
theory of surfaces and the relevant analysis. Chapter 14 revisits the earlier

* Saville, H. (1621). Thirteen lectures on the elements of Euclid. Oxford University Press Oxford.



viii Preface to the first edition

material in the light of the later formulations; Chapter 15 summarizes the
account and compares it with other versions. In the third part I give an
account of Einstein’s theories based on what has gone before, moving from a
Newtonian—Euclidean picture to an Einsteinian—non-Euclidean one. This
transition is often referred to in the literature, but rarely described. The book
concludes with a brief modern account of gravitation, the nature of space, and
black holes.

I believe that intelligible explanations of every subject can and should be
made, giving their real flavour without descending to trivialities, and this has
been my objective. I hope that this book will make mathematics accessible to
some people who have been repelled by its technicalities, and that its historical
approach will itself be of value to mathematicians.

It is with great pleasure that I thank the people who have helped me with
this book: friends and colleagues who, by their interest and advice, have made
it much better than it otherwise would have been. Among those who read it in
whole or in part and commented valuably were Julia Annas, John Bell, David
Charles, David Fowler, Luke Hodgkin, Clive Kilmister, Bill and Benita Parry,
Colin Rourke, Graeme Segal, and Ian Stewart. I should also like to thank the
reviewers whose comments so markedly helped to improve the book and of
whom only Dana Scott is known to me by name, the British Society for the
History of Mathematics for inviting me to address them on some of it and for
the discussion afterwards, and Jennie Connell and the Open University typists
whose excellent jobs of typing the manuscript helped to restore my confidence
in it. Above all, I express my deepest thanks to my parents for their
encouragement, comments, and advice.

Any helpful criticism and comments will be gratefully received. All mistakes
that remain are mine.

Milton Keynes JJ.G.
1978
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1
Early geometry

The civilizations of the Eastern Mediterranean and Middle East seem to have
had an interest in mathematics from very early times. Egyptian and Baby-
lonian scribes in about 1700 BC discussed not only matters of practical or
commercial importance, but carried out abstract calculations as well. Esti-
mates of areas and volumes are found alongside solutions to quite complicated
numer:.al problems, and while the rules of mensuration are frequently wrong
the skill with which the numerical problems were solved suggests very strongly
that the Babylonians, at least, had a good grasp of elementary mathematics.
The Babylonians, who generally surpassed the Egyptians, also developed an
excellent positional astronomy which, it should be noted, had been preceded
by over a thousand years of mathematics. However, the differences between
Greek and Babylonian or Egyptian mathematics of around 300 BC are
manifest. The Greeks were doing geometry, they were proving things, their
methods were deductive, and there are signs of a lively interest in questions of
rigour and logical validity. The Babylonians, on the other hand, had pro-
cedures but no proofs. Like the Greeks they possessed an impressive grasp of
observational astronomy, but it did not rest on a theoretical or geometrical
base. The Greeks, as is well known, gave mathematics a paramount position
in their philosophical endeavours. Plato in numerous places directed his
contemporaries towards mathematics. Aristotle drew many illustrations of
argument from it, which are now collected in Mathematics in Aristotle by
T. L. Heath (1949). At least one form of argument, that of reductio ad
absurdum, was first used in mathematics before being used elsewhere. Natur-
ally we look for the origins of this attitude to see how the transition to
deductive mathematics might have been made.

Unfortunately the evidence for this period is scanty since Eudemus’
History (c. 325 BC) is lost. Virtually the only nearly contemporary references
to early Greek mathematics occur in Plato and Aristotle. Later writers,
writing about work done three to eight hundred years before them, gave fuller
accounts, but they brought to the task of a set of attitudes to mathematics
which must have been different from those of their forerunners, and they may
have credited the earlier mathematicians with a clarity and exactness of
thought which they did not in fact possess. In some cases a later way of doing
things has made it difficult to appreciate the problems originally raised.
Furthermore, the transmission of the record may have been faulty.

Happily, there are now several good histories of early mathematics
available. Foremost amongst the modern texts are the many works of T. L.
Heath, chiefly his three-volume edition of the Elements (1956), his two-volume
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History of Greek mathematics (1921), and the one-volume ‘Greek mathematics
(1930). Other texts are Science awakening by van der Waerden (1961), and The
exact sciences in antiquity by O. Neugebauer (1969). The books in the
bibliography by Fowler (1987), Knorr (1975) and (1986), Lloyd (1970) and
(1973), Mueller (1981), and Szabo (1978) bear witness to the vitality of current
studies in the history of Greek mathematics. Individual topics are treated in
the Oxford classical dictionary and the Dictionary of scientific biography.
These studies have shed much light on our questions concerning the origin and
evolution of deductive mathematics.

The spread of learning

There is a particular problem involved in the transmission of mathematics
across a region or between cultures which is not found in the transmission of
other ideas or techniques. Mathematics is not simply a collection of facts or
‘results’; it is also a set of procedures for isolating problems and for solving
them, a set of assumptions and permissible deductions, a way of thinking
about things. Isolated from these habits of mind the individual results can not
only seem trivial, but they can lose their specifically mathematical character
and become observational or ‘inductive’ instead. Conversely, if the procedures
are transmitted they act as a check upon the body of transmitted facts,
allowing them to be re-derived or excluded if no proof can be found. Yet the
compelling character of mathematics is to interest cultures in similar problems
and so to drive them after similar information, even if they cannot understand
each other’s activity, so we should not necessarily assume that information
has passed when we find two cultures doing similar things. Indeed the evidence
of direct cultural contact between Greece and Mesopotamia is slight, con-
sisting of a few opinions, like that of Herodotus,' who gave the gnomon and
the division of the day into twelve hours a Babylonian origin. It is salutary to
remember that he was wrong about the twelve-hour day, for Neugebauer? has
established that it has an Egyptian origin.

The characteristics of Babylonian mathematics were a good number system
and a rhetorical formulation of mathematical problems, whicl. has led to
their formulation of mathematics being called ‘rhetorical algebra’ by many
writers, but the limitations of rhetorical algebra made its transmission difficuit.
Essentially, rhetorical algebra is a set of procedures expressed in words and
illustrated with numerical examples for solving certain problems: finding
solution to equations, calculating areas and volumes. BM 13901, a tablet
containing 24 similar problems, starts as follows:

1 Herodotus, Book 11, 336 109. Loeb edition, transl. A. D. Godley. Heinemann, London.

2 Neugebauer (1969, p. 81).

3 A picture of the tablet appears in Unit N4 of The history of mathematics (Open University
Course AM289), p. 30, Open University, Milton Keynes; the unit contains a discussion of
Babylonian mathematics. A different translation appears in Fauvel and Gray (1987), p. 31.
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I have added the area and the side of my square: 45. Take |, divide it into two: 30,
and multiply: 30x 30 = 15. Add 15 and 45: 1, the square of 1. Subtract the 30
(which you had multiplied by itself) from the 1. You have 30, the side of the square.

Since all numbers have here been expressed as parts of 60, we should
express the original equation as x>+ x = 3. The coefficient of x is 1; halve
that and square it (4)> = 4. Add 4 and 3 (and form x2+x+1 = 3+1). Both
sides are squares; take square roots ((x+1%)?> = 12. Therefore x+1 =
Subtract the half from both sides; x = ).

Now, a procedure expressed verbally is not a formula, it cannot be mani-
pulated into equivalent forms or checked against another intended to solve
the same problem. For these reasons rhetorical algebra is without proofs and
can accommodate different and incompatible answers. It is tied to such
operations with numbers as can be marshalled in words and therefore derived
fairly directly from the elementary properties of number.

Teachers of it'may have referred to a body of theory transmitted aurally -
which amplified the written remains we have, but it is most likely that the
rhetorical techniques were taught as methods which check. If they were
transmitted as such then they could well seem to anycne who encountered
them a sterile body of facts without coherence or power to inform. In this form
they probably did pass to the West, if only because of their use in commerce.
We can trace the appearance of some rhetorical techniques in Greek mathe-
matics, if not their passage there.*

|There is only one way out of the profusion of contradictory and non-
explanatory results in rhetorical algebra and that is to find a way of making
coherent sense of its results—at least those which are right. I believe that it is
in-attempting to do that that the Greeks were led to geometry, not for its own
sake but as a method of proof. The two go together and provide a deductive
method: for the treatment of mathematical problems. This point of view
enables one to make sense of the otherwise confusing legends that have come
down about the earliest Greek geometers; Thales and the school of
Pythagoras.

Thales -
o= s g
According to Proclus® (aD 410-85) Thales (624?-548? BC)'. . . made many
discoveries himself and taught the principles for many others to his successors,
attacking some problems in a general way and others more empirically’. In
particular he is supposed to have been the first to demonstrate that a circle is
bisected by a diameter, that the base angles of an isosceles triangle are equal,
that the angle in a semicircle is a right angle, and that two triangles are
. See p. 2L
5 Proclus, A commentary on the first book of Euclid’s elements, transl. G. R. Morrow, 1970,

p. 52. 1 shall refer to this book as Proclus (Morrow edn) to dls(mgulsh it from the earlier English
edition translated by Taylor.
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congruent® if they have two pairs of corresponding angles equal and the sides
between those angles equal. Proclus’ commentary on the firstvi-these fosu:y.
(Proclus (Morrow edn), p. 124) gives no clue as to Thales’ proof, but Proclus
did indicate how such a proof might go. Imagine that a diameter does not
bisect the circle and then apply one part of the circle to the other by folding it
over along the diameter. If the two parts are not to coincide one falls inside or
outside the other somewhere, but then radial lines would not all be equal.
which is absurd, and the result follows.

It is sometimes implied by some writers that mathematics is discovered in a
way that reflects its logical order, so that propositions which appeal to others
for their proof must likewise follow these others in their order of birth. Thus,
to prove that the angle in a semicircle is a right angle’ we nowadays use the
result that the sum of the angles is two right angles. It is possible that Thales
appealed.to that result too, but we do not know. However, it is not possible
to infer that, as a mathematician, he would automatically stop to prove the
validity of any result he used. In the second heyday of foundational enquiry,
the late nineteenth century, much of the work done was in providing theories
whose conclusions were the basic assumptions of another man’s work. When
we are at the historical beginnings of deductive mathematics, therefore, we can
well imagine that what was obvious to one man and not worthy of proof was
an interesting puzzle to another. To extract basic assumptions would have
taken time, as the deductive method was seen to apply to more and more of
mathematics and to yield proofs of more already ‘known’ results. So it should
not surprise us to see attributed to Thales results which seem to depend on
others of which he is not known to have a proof and which he may have taken
from the common store of factual knowledge. We cannot even be certain that
he really knew what a proof was. Greek work on purely logical questions
seems to have begun even later than their mathematical investigations.

Naive geometry

We may reasonably imagine an initial, naive formulation of mathematics in
which numbers are represented by geometrical segments, say lines, squares,
rectangles, or cubes. To represent a number® as a line one took a fixed, but
arbitrary, unit length and repeated it as often as was necessary; representa-
tions of square numbers in terms of a unit square proceeded similarly. The
method was traditional in Babylonian and Egyptian mathematics, and was
referred to by Plato® as being common in Greek mathematics. The early, but
not the late, work of the Pythagoreans was cast in such a form.

o Two figures are congruent if they can be made to coincide exactly with one another.

7 This result is attributed to Thales by Pamphile in Diogenes Laertius (1. 24 5, p. 6,ed. Cobet).
third century Ap.

8 Number meant positive integer throughout this period.
? Knorr (1975, p. 172) cites Theaetetus, 148A, amongst other passages.
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Our knowledge of Pythagoras is little better than our knowledge of Thales,
and has been conveniently summarized by Kurt von Fritz.'® No theorem can
be reliably attributed to the man rather than his school, which seems to have
split into factions sometimes after the leader’s death (c. 480 BC). In his day
the school was primarily religious and philosophical in its preoccupations,
and took as its programme the belief that all things are numbers. In mathe-
matics their chief interest was in arithmetic, and they studied numbers
geometrically through their representations as figured numbers. These are
invariably described in histories of mathematics,'' and will be briefly des-
cribed here with a view to establishing a hypothetically Pythagorean proof of
Pythagoras’ Theorem due to Bretschneider.'? The result, that in a right-angled
triangle ABC with a right angle at C, AB*> = AC?+CB?, was known to the
Babylonians by about 1700 Bc. They used it over and over again in their
problem solving, and one tablet, Plimpton 322, carries an impressive list of
triples of numbers which reveals that they had a good grasp of how to
construct integer triples a. b, ¢ such that ¢? = b* +a’ (see the Exercises for
further details). :

I have suggested that what is significant about this period is the move from
procedures to proofs. One may therefore speak of theorems rather than
results, a theorem being a result for which there is a proof. In this sense of
‘theorem” the theorem which today bears the name of Pythagoras must
surely, as Heath (1921, p. 145) suggested, have originated in the school,
although we have no source allowing us to attribute it to Pythagoras directly
and no proof attributable to the school has survived. Proclus, for instance,
does not even attribute the result to Pythagoras.

I shall assume that the famous Theorem of Pythagoras originated in his
school, which involves me in two further assertions:

(1) The result was known for a/l right-angled triangles and not just in various
special cases (3,4, 5:5,12,13;...).

(2) A proof of the theorem was also obtained by them in more or less the
sense in which we understand “proof” today.

My reason for believing this is that as a theorem rather than a conjecture
the result is non-trivial. However, if the Pythagoreans lacked a proof of the
theorem, it is difficult to see why its most immediate corollary, the existence
of ‘irrational numbers’, would so disturb them, and we do have evidence
suggesting that the discovery of irrationals shook them profoundly. How much
easier it would have been to reject tiie conjecture and with it the fateful
corollary. '

10 Dictionary of scientific biography (1975), Vol. XI, pp. 219-25.

11 In addition to Knorr's book there is e.g. Sambursky's The physical world of the Greeks
which gives a fuller account of the Pythagorean attitude to number.

12 Knorr (1975, Chap. VI) gives it particular emphasis. For Bretschneider, see Heath
(1956), note after Prop I, p. 47.
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Figured numbers and a proof of the Theorem of Pythagoras

A number may be represented by a row of uniformly spaced dots, and, since
all numbers are built out of the unit by repetition, classical authors generally
denied that 1 was a number, and numbers began at 2. The unit, 1, was, rather,
the source of number. If the row can be broken into two equal rows the number
is even, but if the dividing line hits a dot in the middle the number is odd.
Figured numbers are obtained whenever the dots are arranged into shapes or
figures (see Figs. 1.2 and 1.3). By no means every number can be figured in a
pre-assigned way. The only numbers which can be represented as triangles are
1, 3,6, 10,...; the only squared numbers are, of course, 1,4, 9, 16, .... The
difference between two figured numbers or, more strictly, the number which
when added to a figured number produces the next figured number of the
same class is called a gnomon. Consecutive gnomons which generate the

T

(b) e ° [} ," ) ° °

Fig. 1.1. (a) 8, an even number, divides into 4+ 4; (b) 7, an odd number, cannot be divided
into two equal halves.
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Fig. 1.2. Triangular numbers -
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Fig. 1.4. A gnomon between two successive triangular numbers.



