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PREFACE

The computer program described in the present book is
the outcome of many years of experience, gathered by
the author, his students and associates, in the course
of teaching, research, consulting work and design
studies. The basic method remains that of Patankar
and Spalding (P & S)(1967a). This method was first
incorporated into a computer program by S.V. Patankar;
and that program was published in a book (P & S, 1967b).
The program was widely used and adapted; for example
an ALGOL version was published recently in the USSR
(Zhukauskas and Shlanchyauskas, 1973).

The second edition (P & S, 1970) of the 1967 book
contained a program developed by the present author.
It was called GENMIX; it is one of the two parents of
the subject of the present work, which is also called
GENMIX. The other parent is the program of CHAM Ltd.,
called PASS (parabolic axi-symmetric systems), which
has been developed for use in engineering practice.
The new GENMIX has also been adapted so as to be
compatible with, and to demonstrate some of the major
ideas of, the CHAM program suite: PHOENICS (parabolic,
hyperbolic, or elliptic numerical-integration code
series).

The new GENMIX is intended primarily for teaching
purposes; and this book has been designed to assist
the potential user to understand its physical and
mathematical basis, and the ways in which it can be
applied to practical problems, and extended in case
of need.

The arrangement of material in the book, which
intersperses mathematical, physical and computer-
coding aspects of the matter, has been chosen so as
to parallel a course of lectures, and associated
computer-workshop sessions, in which the learner is
enabled to make some elementary computations as soon
as he has obtained a superficial knowledge of the
method. However, the reader preferring to study the
material in a different order should find it well
enough sign-posted.

The book is not a guide to the literature of boundary-

layer theory and practice. However, references to and

remarks about the literature have been inserted at

"opropriate points in the text, to assist the reader
ix



x Preface

to perceive the relationships between the present
method and those used by other workers.

The listings supplied at the end, and the accompanying
computer output, represent only a tiny fraction of the
problems which have been solved with the aid of GENMIX
and its forbears. Readers contemplating the use of
GENMIX for a 2D parabolic problem which does not happen
to be among the examples supplied, and wishing to know
if any such application has already been made, are
invited to make contact with the author.

Experience has shown that new users of even highly-
automated computer codes encounter difficulties: some-
times they change the input data, and the computer
produces error messages, unrealistic output, or nothing
at all. Not knowing how to overcome the difficulties,
they make a few random modifications without success,
and then abandon the whole enterprise. Usually they
attribute their failure, in large part, to the originator
of the code; at the very least, they incline to think
that he has misled them.

It would perhaps be possible, by the expenditure of
many man-years of effort, to produce a '"fool-proof"
computer code, which, when provided with indigestible
input data, would print out a message saying what was
wrong and what the user should do about it. However,
this would take so long, and be so costly, that no-one
would be able to wait for it, or afford it when it was
produced. For the time being therefore, would-be users
of computer codes must either develop their own or make
use of those like GENMIX, which are offered in good
faith by their originators as potentially valuable, but
which need to be handled with understanding.

It is regrettably impossible to mention individually
the many people who have contributed to the development
of GENMIX, whether by positive suggestion or by the
provision of experience, favourable or adverse. The
author is however able and glad to acknowledge the
assistance:- of Peter Dale in continually testing,
refining and reconstructing the program over many years,
and of Colleen King, who, with Peter Dale, helped to
prepare the diagrams, and of Christine MacKenzie who
prepared the typescript.
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LOCATIONS OF MAJOR ITEMS

What differential equation does the GENMIX code
solve?

d . 3¢ _ 23 d
_a_g+(a+bw)?%_%(c3%)+d . (2.1-1)

See page 14 et seq.

What physical laws and processes are represented
by this equation?

Conservation and transport, by convection and
diffusion, of heat, mass and momentum, for two-
dimensional boundary-layer flows.

See page 36 et seq.

What is the basis of the finite-difference
representations of the differential equations?

Integration over control volumes, coupled with
interpolation assumptions, in such a way as to
link downstream (unknown values) implicitly.
See page 66 et seq.

How are the finite-difference equations solved?

By application of the tri-diagonal matrix algorithm

(TDMA), sweeping once through the flow domain.
See page 79 et seq.

What features of the GENMIX grid are mainly
responsible for the economy of the method?

(1) Its width expands and contracts so as just
to cover the region of interest.

See pages 12 and 115,

(2) The use of non-dimensional stream function
as cross-stream variable permits lateral-
convection terms to be computed accurately
without iteration.

See page 65.

xi



xii

D

Locations of major items
How are turbulent flows handled in GENMIX?

The present version contains.a form of the mixing-
length model. However, versions containing more
advanced turbulence models exist, and will be
published.

See pages 106 et seq, and 125 et seq.

What models of chemical-kinetic processes are
built into GENMIX?

A single-step reaction is postulated. 1Its rate

is controlled by an Arrhenius-type expression in
laminar flow, and by an "eddy-break-up'" expression
in turbulent flow.

These are merely examples. Much more sophisticated
models can be incorporated.

See pages 130 et seq.

Does GENMIX solve the lateral (y-direction)
momentum equation?

Not in the present version; but versions exist
which do solve that equation both for supersonic
(hyperbolic) and subsonic (partially-parabolic)
problems.

See page 218 et seq.

To what uses can GENMIX be put?

These are exemplified in Chapters 9 and 10.
See page 143, et seq.

How can GENMIX be extended?

By the inclusion of more advanced turbulence
models; by the introduction of further physical
effects such as swirl, radiation, complex
chemistry, suspended particle effects; and by
allowance for lateral-momentum effects.

See Chapter 11. ERRATA

Page 117:
In 3rd line from bottom:

replace  “FACI which, being”
by “FACI which is being”

Page 118:

In 6th line from top:
replace “RM1”
by 5‘RMI”

In 7th line from top:

replace  “0.4(pur);”
by “0.4(pr);.UDIF”’
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Chapter 1 INTRODUCTION

1.1 The scope of two-diMeasional boufidary-
layer theory

(a) Definitions

A boundary layer can be characterised as a region, in
a moving fluid, in which there is a single predominant
direction of flow; and in which transfers of momentum,
heat and matter by molecular and turbulent inter-
mingling occur only at right angles to the predominant
direction.

A two-dimensional boundary layer is a boundary layer
in which each fluid property varies with only two of
the three possible space coordinates. Both plane
flows and axi-symmetric flows are two-dimensional (2D)
according to this definition; the third dimension, in
which the fluid properties are invariant, is the
direction normal to the plane in the first case; and
it is the angle of rotation about the symmetry in the
second instance.

A steady flow is one in which all fluid properties
are invariant with time. A flow in which this
condition is not obeyed is called unsteady or transient.

(b) Examples of two-dimensional steady boundary-
layer phenomena

Flow phenomena which satisfy the definition include the
following: -

°® Flow around an aerofoil of uniform section
and large aspect ratio.

°® Flow in plane or axi-symmetric jets, wakes,
plumes, and diffusion flames. If buoyancy
is influential, the gravitational field must
be aligned with the symmetry axis.

) Flow in a wall jet, or in the region down-
stream of a film-cooling slot, where the
slot is wide and of uniform width.

) Developed or developing turbulent pipe flow.

) Flows in circular-sectioned nozzles,
diffusers and venturis.

[ Flow over a blunt-nosed body of revolution,
at zero angle of attack, rotating about its
axis.

1



2 GENMIX

It should be noted that, in the last example, three
velocity components are to be considered. However,
the flow is 2D because no fluid property varies with
circumferential position: the flow is axi-symmetrical.

(c) Examples of steady two-dimensional flow which
are not boundary layers

It is important to distinguish boundary layers from
flows which lack the '"single predominant direction of
flow'", such as the following:-

® The stalled aerofoil of uniform section and
large aspect ratio.

°® Flow behind a bluff-body flame stabiliser.

) Flow downstream of a sudden enlargement in
the diameter of a pipe.

) The flow which is brought about by the
impingement of a jet perpendicularly on
to a wall.

°® The flow induced by the entry of an
intensely-swirling fluid stream into an
axi-symmetric chamber.

) The flow in a cavity, of rectangular cross-
section, let into the wall of a duct
through which fluid streams.

(d) Examples of flows which are boundary layers
but not two-dimensional

Many boundary layers, in practice, are three-dimensional
(3D). This means that there are variations of fluid
properties, in both the directions normal to the
predominant direction of flow, not just in one.

Examples of such 3D boundary layers, which can not be
analysed by the present method, include the following:-

) The aerofoil of non-uniform cross-section or
small aspect ratio.

® Film cooling effected by the blowing of a
coolant fluid along a surface from a row
of orifices of circular cross-section.

° Flow through a duct of square cross-section.

® Flow through a duct of circular cross-section,
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having a wall temperature which varies
with circumferential position.

°® Flow through a duct of circular cross-
section, under the influence of buoyancy
forces directed obliquely to the duct
axis.

) Flow through a duct of arbitrary cross-
section, which is in steady rotation about
an axis at right angles to its length.

1.2 Some practical circumstances in which steady
two-dimensional boundary layers often play
important roles

2D steady boundary layers are too common in practice
for it to be possible to provide a comprehensive list
of their occurrences. The following short one is
merely suggestive:

) The film cooling of gas-turbine combustion
chambers.

) Heat transfer to the stator blades of gas
turbines.

) The melting of the "batch" (i.e. the inflowing

stream of sand, broken glass, ash and other
materials) in a glass furnace.

° The burning of fuel gas in a turbulent
diffusion flame confined in a duct.

° Mixing of two streams in an ejector.

) The spread of flame through a pre-mixed fuel-
air mixture, well downstream of a bluff-body
flame-stabilising baffle.

L) Flow in an axi-symmetrical diffuser.

°® The rocket exhaust plume, in which chemical
reactions may occur as the excess fuel mixes

with the oxygen of the air.

) The motion of air and water vapour in the
lower atmosphere.

® Vaporisation of water from the surface of a
lake.
® The heating of the cooling water in a steam

condenser.
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There exist also some practically-interesting phenomena
which are mathematically similar, even though they are
one-dimensional and unsteady: the "predominant direction"
is that of time; and the transfers of momentum, heat and
matter occur "at right angles to the time dimension",
i.e., in space. Because their mathematical similarity
implies that they can be analysed by the same method,

and computed by the program described below, examples
will now be given. They include:-

) Unsteady heat conduction into the earth,
under the influence of daily and yearly
changes.

e The growth and decay of the layer of

turbulent fluid on the surface of a wide
lake, stirred by a uniform wind stress.

) Unsteady propagation of a plane laminar
flame through a pre-mixed reservoir of
combustible gas.

) The growth of a spherical bubble of steam
in a reservoir of superheated liquid.

1.3 The mathematical character of the problem of
predicting 2D steady boundary-layer behaviour

(a) Marching integration

The most important characteristic of boundary-layer
problems from the point of view of the practical
mathematician is that they permit '"marching integration'.

"Integration" means establishment of the solution of
the differential equations which describe the physical
processes; so integration entails finding out what
values of velocity, temperature, concentration, etc.,
prevail at each point in the domain of interest.

"Marching'" integration is that kind of integration

which starts by determining the values at one end of

the domain, then determines the values over a front
displaced just a little from that end, and so gradually
moves the "integration front'" towards the other end of
the domain until the required values have been determined
everywhere. Iteration is not required. (The metaphorical
reference is to a line of soldiers sweeping shoulder-to-
shoulder across the battlefield, and performing their
task with such efficiency that they need not return to
"mop up'" isolated pockets of resistance; nor do they

have to retreat and make renewed assaults until the

enemy is finally subdued.)
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The direction of the "march" is always that of the
"predominant direction of flow'" mentioned in the
definition given in section 1.1 (a). Because
convection cannot occur in the direction opposite to
the direction of fluid flow, and because the transfers
of momentum and heat by viscous and conductive action
take place only in the direction at right angles, no
influences from downstream locations can extend to up-
stream ones.* This is why, after having made an
integration sweep in the downstream direction, there
is no need to return; for, since the later-determined
quantities cannot influence those determined earlier,
no iterative correction is required. (N.B. 1In re-
circulating flows, where there is no such predominant
direction, convection can operate in all directions.
Therefore, no matter what direction of sweep is chosen,
it will always occur that earlier-determined values can
be influenced by those determined later; so repeated
integration sweeps are needed, and one must be content
merely if these are few and if they result in a
converged solution, i.e. one that in the end changes
insignificantly from one sweep to the next.)

Why the ability to use marching integration is important
in practice is that the confinement of the integration
to a single sweep diminishes the necessary computer
time; moreover, the freedom to visit each point in the
field only once reduces the dimensionality of computer
storage. Thus, only one-dimensional storage is needed
for temperature (for example) in a two-dimensional
boundary-layer calculation; for at any stage in the
calculation, one is concerned only with the temperatures
along a single line traversing the domain. (N.B. "Domain"
and "field", "march" and "sweep', "integration" and
""value-determining" are used as synonyms in this
discussion, simply for variety. No significant
distinctions are implied.)

Three mathematical terms can be usefully introduced
at this point: parabolic, elliptic and partially-
parabolic (Spalding, 1974, 1975a). The first is
employed to describe mathematical problems which can
be solved by a single marching integration; therefore
all the problems discussed in the present book are
parabolic. The second is employed for problems
involving recirculation, or straight-through flow at

*Footnote: Strictly speaking, non-uniformities of pressure
arising from downstream disturbances can, if the flow
velocity is subsonic, transmit themselves upstream. In the
present book, attention is confined to circumstances in
which such transmissions are negligible; the chief require-
ment for this to be true is that the radius of curvature of
the streamlines should be much larger than the thickness of
the boundary layer.
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low Reynolds numbers, in which convective or diffusive
(viscous, conductive) influences from downstream affect
upstream locations; thus a stalled aerofoil presents

an elliptic problem. The third term, partially-parabolic,
describes flows of the kind indicated in the footnote

on page 1.5, for which the downstream -+ upstream
influence is exerted via pressure alone; the term
"semi-elliptic" has also been used for such flows
(Spalding, 1976a).

In the present work, attention is confined to 2D
parabolic problems; however, the computer code GENMIX
can be adapted to the solution of 2D partially-parabolic
ones, as described in Chapter 11.

(b) Use of a grid

Although, in principle, the values of fluid variables

at all points in the domain are of interest, in
numerical computations it is necessary to confine
attention to a limited number of points. This is done
to save computer storage and time. If later the values
of variables are required at places which do not

coincide with the selected locations, they must be
obtained from the considered-point values by interpolation.
In the interests of easy organisation of the calculation,
the considered points are arranged to lie at the nodes
of a grid formed by two sets of lines intersecting at
right angles (or nearly doing so). The lines of one

set lie more or less along the '"predominant direction

of flow"; the lines of the other set are therefore more

direction
of marching

direction in
which shear
stresses are
significant

"predominant direction

//x of flow"
\\on

e '"forward step"

starting
line

FIG. 1.3-1 ILLUSTRATION OF THE FINITE-DIFFERENCE GRID
FOR A 2D PARABOLIC FLOW.
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or less coincident with the directions in which '"shear
stresses, heat fluxes and diffusion fluxes are
significant'". (The reference is of course to the
definition of 1.1 (a).) A marching integration therefore
involves starting at the upstream edge of the grid,

where the values of the fluid variables must be given,
and proceeding line-by-line across the grid to the
downstream edge, determining the fluid-variable values
for the nodes for each successive line.

(c) Integration formulae

How are the values of the fluid variables at the nodes
on the downstream line of a step to be obtained from
those for the nodes at the upstream line of the step?
Though more complex formulae are possible, most
integration procedures use either four-node or six-
node integration formulae answering this question.

Explicit formulae connect the values of fluid variables
which are valid for groups of four nearby points, of
which one is on the downstream line and the other three
are on the upstream line. The latter values are always
known quantities when an integration step is being
performed; so there is only one unknown value, the
downstream one, in the formula. This value can there-
fore be expressed explicitly in terms of known quantities,

directiona\
of

marching

downstream line

cluster of points
connected by a
four-node formula

upstream
line

///'

the "forward step"
in question

FIG. 1.3-2 ILLUSTRATION OF THE EXPLICIT FORMULAE
FOR MARCHING INTEGRATION



