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ABSTRACT

In this paper, we study the structure of infinite partially ordered
sets (Q,<) under suitable transitivity assumptions on their group

A(Q) = Aut(Q,<) of all order-automorphisms of (Q,<).

Let k € N. We call A(Q) k-transitive (k-homogeneous) if whenever
A,B c Q@ are two subsets of ( each with k elements and ®: (A,<) + (B,<)
is an isomorphism, then there exists an automorphism o € A(Q2) which maps
A onto B (which extends ¢), respectively. A(Q) 1is w-transitive

(w-homogeneous), if A(Q) 1is k-transitive (k-homogeneous) for each k €N.

We show that under the assumption that A(Q) 1is k-transitive or
k-homogeneous for some 2 < k € N various sufficiently complicated struc-
tures (Q,<) exist, and we give a classification and characterization of
these structures. As one of many consequences we obtain that for each
k > 2, k-transitivity of A(Q) is indeed weaker than k-homogeneity,
but, surprisingly, for any partially ordered set (2,<), A(Q) is

w-transitive iff A(Q) 1is w-homogeneous.

1980 Mathematics Subject Classification:

Primary: 06A10, 20B22

Secondary: 20B27, O06A12

Key words and phrases: Partially ordered set, order-automorphism,

k-transitive automorphism group, k-homogeneous automorphism group,
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§1 INTRODUCTION

In this paper let (Q,<) always be an infinite partially ordered set
and A(Q) = Aut(Q,<) the group of all order-automorphisms of (&,<). If
(2,<) is linearly ordered (a chain) and k € N, (2,A(Q)) or simply &

is called k-homogeneous if the following condition holds:

(+) Whenever A,B c @ are subsets of Q with |A] = |B| =k, there

exists o € A(R) with A% = B.

Doubly homogeneous chains (Q,<) and their automorphism groups A(R)
have been extensively studied. These groups can be used e.g. for the con-
struction of certain infinite simple groups (Higman [20]). In a natural
way they also become important examples of lattice-ordered groups, and any
lattice-ordered group can be embedded into the automorphism group of some
doubly homogeneous chain (Holland [23]). The interplay between the struc-
ture of such chains and the normal subgroup lattices of their automorphism
groups was studied in [1,2,10-12]. Obviously, @, R, and more generally all
linearly ordered fields are examples of 2-homogeneous chains. For a

variety of further results see Glass [17].

In this memoir we examine the structure of partially ordered sets
(p.o. sets) (,<) under similar transitivity conditions as (+). A study
of this kind was already proposed by H. Wielandt [32]. Answering another
question of Wielandt, in [9] we showed that the assumption (+) for (Q,<),
even if k 1is only assumed to be an arbitrary cardinal with 2 <k < e,
is very strong: Then either the order on § 1is trivial, or (Q,<) 1is
linearly ordered and k is finite. Almost the same conclusion is true, as
shown here in §3, even if we just suppose that any two subsets of § of

cardinality k are elementarily equivalent in the first order language of

Received by the editors September 12, 1983 and, in revised form March 1, 1985.



2 MANFRED DROSTE

predicate calculus for partially ordered sets. Therefore, the following

weakening of (+) was suggested by W.C. Holland.

Let (Q,<) be a p.o. set and k € N. We call A(Q) k-transitive
(k-homogeneous), if whenever A,B < @ each have k elements and
@: A > B 1is an isomorphism, then there exists o € A(Q) with A% =B
(cx|A = @), respectively. A(Q) is w-transitive (w-homogeneous), if A(Q)

is k-transitive (k-homogeneous) for each k € N, respectively.

For chains (Q,<) condition (+), k-transitivity, and k-homogeneity
of A(Q) coincide (k € N). Obviously, k-transitivity is always implied by
k-homogeneity and w-transitivity by w-homogeneity. Henson [18,19] showed
that there are ZNO non-isomorphic countable binary relational structures
with w-homogeneous automorphism group; precisely countably many of these
are graphs (Lachlan and Woodrow [26]), for related results see [14-16,25,
28]. Schmerl [30] characterized all countable p.o. sets (Q,<) with
w-homogeneous automorphism group. We will obtain his result as a conse-
quence of our considerations. Lattices with certain homogeneity properties
were investigated in [5,6,13]. For further related work, see [3,4,8,21,22,

271

We will examine infinite p.o. sets (Q,<) of arbitrary cardinality
under the assumption that A(Q) is k-transitive for some 2 < k € N.
Under this assumption instead of (+), various different and complicated
structures (Q,<) are possible. We now give a summary of our results. We
derive a classification of these partial orders in §4, and in this and
subsequent sections we obtain in almost all cases a characterization of
the condition that A(Q) is k-transitive for some k > 2 by the struc-
ture of the p.o. set (Q,<). In many of these cases, we either give an
explicit description of the order on Q or we reduce it to the structure

of doubly homogeneous chains, which we consider as basic in our study.

Sections 5 and 6 deal with the special case that (Q,<) is a "tree";
then, in particular, @ is not a chain, for any two elements a,b € @
there exists c¢c € Q with ¢ < a and c¢ < b, and for each a € Q the set
{x € 9; x < a} 1is a dense chain. We prove in §5 that in this case A(Q)

can be k-transitive or m-homogeneous only for k € {1,2,3} and
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m € {1,2}, respectively. We show that 3-transitivity of A(Q) implies
2-homogeneity (which trivially implies 2-transitivity), and we charac-
terize by the structure of (Q,<) when these implications can be reversed.
As a consequence, we obtain that if A(Q) is 2-homogeneous, then it also
satisfies certain other kinds of higher homogeneity properties. For in-
stance, if (Q,<) 1is, in addition, assumed to be a meet-semilattice, then
any isomorphism between two maximal subchains of § extends to an auto-
morphism of Q; for countable trees the converse is also true, as shown

in §6.

In section 6 we first construct a large class of trees of arbitrary
cardinality with 2-homogeneous or 3-transitive automorphism groups and
various additional properties. This provides many examples for the results
of §5 and also a solution of a problem of Fraissé [14], since for these
partial orders A(Q) 1is 1- and 2-homogeneous, but, as noted above,
clearly not w-homogeneous. Then we give an explicit characterization and
construction of all countable trees (Q,<) with 2-transitive automor-
phism groups; it follows that then A(Q) 1is also 2-homogeneous. Up to
isomorphism, there are precisely countably many such countable trees, of
which countably many are meet-semilattices and equally many not. Moreover,

there is a unique countable tree with 3-transitive automorphism group.

Another important class of p.o. sets with 2-transitive automorphism
groups consists of those sets (Q,<) in which any two elements have a
lower and an upper bound and which contain a subset {a,b,c} < @ such
that a <b and c¢ is incomparable with both a and b. Here we have
for any n € N and all sufficiently large k > n the following implica-
tion: If A(Q) is k-transitive, then A(Q) is n-homogeneous and any
finite p.o. set (P,<) with at most n elements can be embedded into
(2,<). As a special case we see that if A(Q) is w-homogeneous, any
finite p.o. set (P'E) can be embedded into (Q,<); for countable sets @

this was proved by Schmerl [30].

Finally, in section 8 we study the relationship between k-transitivity
and k-homogeneity of A(Q) and various properties of the order on Q.

For instance, there exist precisely two countable lattices (Q,<) for
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which A(Q) is k-transitive for some Xk > 3. If (Q,<) is any p.o. set
and A(Q) k-transitive for some k > 2, the maximal chains (antichains)
in @ are either all infinite or all have the same finite cardinality,
respectively; as shown by example, here it can happen that two infinite
maximal subchains of @ have different cardinality.

It is well-known that chains (Q,<) have the following property: If
A(Q) 1is k-transitive for some k > 2, then A(Q) is w-transitive.
Chains are not the only p.o. sets with this property, but for arbitrary
p.o. sets (Q,i) this implication fails by two reasons. First, as already
mentioned, trees are examples of p.o. sets § for which A(Q) can be
k-transitive or k-homogeneous only for small values of k € N. Secondly,
we characterize all p.o. sets (Q,<) for which A(Q) is k-transitive or
k-homogeneous for some large, but not for smaller values of k € N; there
exist precisely countably many such countable sets. However, we show that
if A(Q) is k-transitive for some k > 2, then A(Q) is always also
n-transitive either for each n < k or for each n > k. Moreover, k-tran-
sitivity (k > 2) is inherited not only by either all smaller or all larger
values, but also by intermediate values: If 2 <m <n < k and A(Q) is
both m- and k-transitive, then again A(Q) is also n-transitive. These
results remain true if "transitive" is replaced by "homogeneous". Further-
more, we show that in general for each k > 2 the assumption of k-tran-
sitivity of A(Q) 1is strictly weaker than that of k-homogeneity. Hence

the following result is quite surprising.

Let (Q,<) be any infinite p.o. set. Then A(Q) is w-transitive iff

A(Q) 1is w-homogeneous.

Here the question arises for which other binary relations than partial

order an analogous equivalence holds.

We conclude with a list of open problems in §9.



§2 NOTATION

For the convenience of the reader, we summarize our notation here.
Background information on linearly ordered sets may be found in Glass [17]

or Rosenstein [29].

SETS. Let A U B, UAi denote disjoint unions. Let N = {1,2,3,...}

denote the set of all positive integers, N =N U {0}, and N =N 0 {X_}-
o (¢]

(6]
For a mapping f 1let f] designate its restriction to A, af its value

at a, and Af = {af; a € A}; the composition of mappings is from left to

A

right. Let S(M) denote the symmetric group of all permutations of a set
M and idM (or id, if there is no ambiguity) the identity map of M. If

A, (i € I) are pairwise disjoint sets and o Ai > Mi maps, we denote by

@ = ® o, the map from J A, into (_J M, defined by o = o,
. i . i s i 8 A. i
1€l ier i€T i

(i € 1).

PARTIALLY ORDERED SETS. A set § with a reflexive, antisymmetric,

transitive relation < defined on it is called a partially ordered set,
or p.o. set. We always let subsets of p.o. sets carry the induced partial
order. Let A < (Q,<). Then A is called linearly ordered or a chain, if
a<b or b<a whenever a,b € A, and A is trivially ordered or an
antichain, if a < b implies a =Db for any a,b € A. We say that A is
dense in § if whenever a,b € @ with a < b, there is some ¢ € A with
a < c < b. We call A bounded above (below) in Q 1if there exists x € Q
with a < x (x < a) for all a € A; A is unbounded above (below) in Q
if it is not bounded above (below) in Q; A is unbounded (bounded) in Q
if it is unbounded (bounded) both above and below in {, respectively. The
set (A,<) is called dense (bounded above, etc.) if (A,<) 1is dense
(bounded above, etc.) in itself. In particular, a chain (A,<) is unboun-
ded iff A contains neither a greatest nor a smallest element.

For elements a,b € Q@ we write all b if a and b are incomparable,

i.e. if neither a <b nor b < a (in particular, a * b), and a i b
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(a b, a# b), if not a <b (a <b, all b), respectively. For subsets
A,BcQ let All B (A <B, A< B) denote that a ll b-(a <b, a <b), re-
spectively, for all a € A, b € B. In particular, A Il B and A < B each
imply that A and B are disjoint. We also write a |l B (a < B, a < B)

for {a} Il B ({a} < B, {a} < B).

ISOMORPHISMS. A mapping ¢: (A,<) » (B,<) 1is called an embedding, if
for any a,b € A we have a < b iff alp < bw. In particular, each embed-
ding is injective. A bijective embedding is called an <Zsomorphism, and an
isomorphism from (A,<) onto itself is an automorphism of (A,<). If
(p,<) 1is a p.o. set, let A(P) always be the group of all automorphisms

of (p,<).

CONVENTIONS ADOPTED. (Q,<) always denotes a fixed infinite p.o. set.

Capital roman letters A,B,C,... are used for subsets of {, small roman
letters a,b,c,...,x,y,z for elements of Q, and small Greek letters «,
B,Y,... for automorphisms of Q, i.e. elements of A(Q). For mappings we

use sometimes «,B,Y,Y,9,n, sometimes f,g,h.



§3 TRANSITIVE AUTOMORPHISM GROUPS

3.1. Chains. 1In this section we start with our examination of the struc-
ture of infinite p.o. sets whose automorphism groups satisfy suitable

transitivity assumptions.
In this paper, (Q,<) will always denote an infinite p.o. set.

The following definition originated from a proposal by W.C. Holland.

Definition 3.1.1. (a) Let k € N. A(Q) <s called k-transitive

(k-homogeneous), if whenever A,B < Q each have k elements and

w: (A,<) = (B,<) is an isomorphism, there exists «a € a(Q) with A% =B

(a|A = @), respectively.
(b) A(Q) <s called w-transitive (w-homogeneous), if A(Q) <s

k-transitive (k-homogeneous) for all k € I, respectively.

In other words, A(Q) is k-transitive (k-homogeneous) if for any two
isomorphic subsets A,B of Q with k elements, some (any) isomorphism
from A onto B extends to an automorphism of Q. Trivially, 1-transiti-
vity and 1-homogeneity of A(Q) coincide, and if A(Q) if k-homoge-
neous for some k € N (w-homogeneous), then it is also k-transitive
(w-transitive), respectively. Since the following well-known proposition

is very basic and important for our setting, we include its proof:

Proposition 3.1.2 (cf. Wielandt [32; Satz 6.18]). Let (Q,<) be an

infinite chain and 2 < k € . The following are equivalent:

(1) A(Q) is k-transitive. ‘

(2) A(Q) is k-homogeneous.

(3) Whenever A,B < Q each have k elements, there exists a € A(RQ)
with 4% = B.

(4) A(Q) s w-transitive.

(5) (Q,<) has neither a greatest nor a smallest element, and any two

intervals la,bl, [e,dl of Q are order-isomorphic.



8 MANFRED DROSTE

Here [x,y] = {z € Q; x < z <y} for any x,y € @ with X < y.

Proof. (4) » (1) <> (2) « (3): Trivial.

(1) » (5): Suppose a € () were the greatest element of {. Choose

elements a ..,a, € O such that a, < a, < < a, < a. By assumption,

g2 k 1 2 e k
there exists o € A(Q) with {a1,...,ak}“ = {a2,...,ak,a}. Then

o
k

Now let a,b,c,d € 9 with a < b, ¢ < d. Since O has no smallest

a = a < aa, a contradiction. Similarly, Q has no smallest element.

element, we may choose a subset A c @ with |[A| = k-2 and A < {a,c}.

There exists o € A(Q) with A% =a, a% = c, b = d. Then is an

*lfa,b]

isomorphism from [a,b] onto [c,d].

(5) » (4): Let n €N and A = {a1,...,an}, B = {b ,b_} € 0 such

qre-e1By

b, < bi+1 for each 1 < i < n-1. Choose agsa

Then, if we put bO = ao,

for each i € {0,...,n} there exists an isomorphism 0, from

that a; < a; 40 by n+1

such that a,. < {a1,b1} and {an,bn} < a

0 n+1°

Pht1 T 2n4q0

< x}. Then

[ai,ai+1) ﬁnto [bi’bi+1)' Let 2 = {x € Q; x < a or a

0 n+1

a = idZ & o @, € A(Q) maps A onto B. Hence A(Q) 1is n-transitive.
i=0

The result follows.
As a consequence, we note:

Remark 3.1.3. If (Q,<) <s an infinite chain with 2-transitive auto-
morphism group, then (Q,<) s dense and unbounded. Consequently, there
exists up to isomorphism precisely one countable chain with 2-transitive

automorphism group, namely (§,<).

It is well-known that for each infinite cardinal N there exists a
chain (Q,<) of cardinality ® with 2-transitive automorphism group; for
instance, we can choose (Q,<) to be a linearly ordered field of cardina-
lity ®. A construction of chains @ with 2-transitive automorphism
groups having prescribed normal subgroup lattices is contained in Droste

and Shelah [12].

In the situation of Proposition 3.1.2, the equivalence of conditions
(1)-(3) is obvious. However, we will see that in general, if (0,<) is

just supposed to be a p.o. set, these conditions are no longer equivalent.
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In this section we examine condition (3) for p.o. sets which turns out to

be very strong.

We say that two subsets A,B c 2 are elementarily equivalent (denoted
by A = B),'if (A,<) and (B,<) satisfy the same first order sentences
of predicate calculus in the language of partially ordered sets. Clearly,
A =B implies A = B. If (Q,<) 1is partially ordered, the inverse
ordering <' on (Q is defined by a <'b iff b < a (a,b € Q). Now we

show:

Theorem 3.1.4. Let (Q,<) be an infinite p.o. set and k an arbi-
trary cardinal with 2 < k < |Q|. Then the following are equivalent:
(1) Any two subsets of Q of cardinality k are elementarily equivalent.
(2) Any two subsets of Q of ecardinality Kk are isomorphic.
(3) (9,<) and k satisfy one of the following three (mutually exclusive)
conditions:
(a) (9,<) s trivially ordered.
(b) (Q,<) is linearly ordered, and k € WN.
(¢c) We have k = |Q|, and either (Q,<) or Q with the inverse
ordering is well-ordered and, moreover, isomorphic to the least

ordinal of cardinality k.

Proof. (3) - (2): Obvious, since in case of (3c), each subset of Q

of cardinality k 1is isomorphic to Q.
(2) >~ (1): Trivial.

(1) » (3): Let us assume that the order on ( 1is not trivial. We

distinguish between two cases, k € N and k = o,

Case I. Assume k € IV.
We first show that if there exists a chain A c @ with |A] =n €N

and 2 < n < k, then there is also a chain B c 2 with n+1 elements.

Indeed, choose D,E c % with A cE, |E| =k, and |[D| = k2. Split
% < =
D =\'Jc, with |Ci| =k for all i =1,...,k. Let i€ {1,...,k}. Since
i=1
C. = E and A c E, there exists a chain B, < C, with |[B.| = |A.| = n.
h et q = 1 1 1

Let a, = min B; € C;- Now put C = {ai; i=1,...,k}. By C=E, C again

contains a chain with n > 2 elements. In particular, a; < aj for some
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i,j € {1,...,k}. Hence B = Bj 0 {ai} is a chain with n+1 elements.

Since by assumption there exist two elements vy,z € @ with y < z, by

induction we obtain a chain L ¢ @ with |L| = k. Now if a,b € @, choose
TcQ with a,be€ T and |T| = k. Then T =L and either a < b or
b < a. Hence (Q,<) is linearly ordered.

Case II. Let k be infinite.
We let k also denote the least ordinal of cardinality k. Choose

X € Q. Let T = {a € ; a || x}. We first show |T| <k . Let vy,z € Q

with y < z. Choose Y c @ with y,z € Y and |Y| = k, and decompose
y= U Y, with |[I| = |Yi| =k for each i € I. Since Y, =Y for
iel

each i € I, there are Yir24 € Yi with Y; < %4 Let X = {yi,zi; ie1I})

So |X| = k, and for each ¢ € X there exists d € X with ¢ <d or
d < c. Now if we had |T| > k, we could choose S c T with [S| = k. Then
X = S U {x}, in contradiction to x| S. Hence |T| < k.
In particular, we have |{a € Q; a > x}| = |Q| or
[{a € 9; a < x}| = |Q|. W.1l.0.g9. we assume the first equality and then

show that (Q,<) 1is well-ordered. First we construct a well-ordered chain
A c Q with A = k. To do this, choose Z c {a € Q; a > x} with x € 2

and |Z| = k. Each subset of ( of cardinality k 1is elementarily equi-
valent to 2 and thus contains a smallest element. Hence we can inductive-
ly choose elements a; €7 (i € k) such that

{a.; j < i} < a; = min(Z ~ {aj; j < i}) for each 1i € k. Then put

J
A = {ai; i€ k}.

Next we claim that (Q,<) is linearly ordered. Indeed, let a,b € Q.
Choose V c @ with a,b € V and |V| = k. Then V = A, implying a < b

or b < a.

Now we show that there is no countable set B < @ which is isomorphic
to the set M of all negative integers with their natural ordering. Other-
wise, let m = max B. If A <m, A U {m} has a greatest element, but A
does not, contradicting A = A U {m}. Hence m < a, for some i € k. But

now we obtain a (dual) contradiction by A = B U {aj; i < 3j € k}.

Consequently, (Q,<) is well-ordered. Split © = C (U D such that



