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Preface

Category Theory has developed rapidly. This book aims to present
those ideas and methods which can now be effectively used by Mathe-
maticians working in a variety of other fields of Mathematical research.
This occurs at several levels. On the first level, categories provide a
convenient conceptual language, based on the notions of category.
functor. natural transformation, contravariance, and functor category.
These notions are presented, with appropriate examples, in Chapters |
and II. Next comes the fundamental idea of an adjoint pair of functors.
This appears in many substantially equivalent forms: That of universal
construction, that of direct and inverse limit, and that of pairs of functors
with a natural isomorphism between corresponding sets of arrows. All
these forms, with their interrelations, are examined in Chapters Il to V.
The slogan is “Adjoint functors arise everywhere™.

Alternatively, the fundamental notion of category theory is that of a
monoid —aset withabinary operation of multiplication whichisassociative
and which has a unit; a category itself can be regarded as a sort of general-
ized monoid. Chapters VI and VII explore this notion and its generaliza-
tions. Its close connection to pairs of adjoint functors illuminates the
ideas of universal algebra and culminatesin Beck'stheoremcharacterizing
categories of algebras; on the other hand, categories with a monoidal
structure (given by a tensor product) lead inter alia to the study of more
convenient categories of topological spaces.

Since a category consists of arrows, our subject could also be de-
scribed as learning how to live without elements, using arrows instead.
This line of thought, present from the start, comes to a focus in
Chapter VIII, which covers the elementary theory of abelian categories
and the means to prove all the diagram lemmas without ever chasing
an element around a diagram.

Finally, the basic notions of category theory are assembled in the
last two chapters: More exigent properties of limits, especially of filtered
limits, a calculus of “ends”, and the notion of Kan extensions. This is the
deeper form of the basic constructions of adjoints. We end with the ob-
servations that all concepts of category theorv are Kan extensions
{§ 7 of Chapter X).
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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f : X — Y represents a function;
that is, a set X, a set Y, and a rule x+ f x which assigns to each element
x€ X an element fxe Y whenever possible we write fx and not f(x).
omitting unnecessary parentheses. A typical diagram of sets and func-

tions is
Y
h VA

X

it is commutative when h is h=g f, where g - f is the usual composite
function g: f : X —Z, defined by x+~g(fx). The same diagrams apply
in other mathematical contexts: thus in the “category™ of all topological
spaces, the letters X, Y, and Z represent topological spaces while f, g,and h
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g, and h for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product
X x Yoftwo sets, consisting as usual of all ordered pairs {x, y) of elements
xe X and ye Y. The projections <{x, y)—x, {x, yy+—) of the product
on its “axes” X and Y are functions p: X x Y— X, g: X x Y— Y. Any
function h: W— X x Y from a third set W is uniquely determined by its
composites p:-h and q-h. Conversely, given W and two functions
fand g as in the diagram below, there is a unique function h which makes
the diagram commute; namely, hw={fw,gw):

w
2N
X XxY »Y
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Thus, given X and Y, {p, g is “universal” among pairs of functions from
some set to X and Y, because any other such pair { f, g> factors uniquely
(via h) through the pair (p,q). This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in the
category oftopological spacesorofgroups,describes uniquely the cartesian
product of spaces or of the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W, X) for the set of all functions f: W—X and
hom(/U,V,. /X, Y)) for the set of all pairs of functions f:U—X,
g:V—Y, the correspondence h—{ph,qh) =< f,g)> indicated in the
diagram above is a bijection

hom(W, X x Y)=hom({W, W} (X, Y)).

This bijection i1s “natural™ in the sense (to be made more precise later)
that it is defined in “the same way™ for all sets W and for all pairs of sets
¢X.,Y, (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction W-- W, W which sends each set to the diagonal
pair AW = (W, W, and the construction (X, Y)>+— X x Y which sends
each pair of sets to its cartesian product. Given the bijection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them ; two functions
k:X— X and t: Y— Y have a function k x { as their car:esian product:

kxt: Xx Y= X'x Y, (x,yd>e-<kx, ty).

Observe also that the one-point set | = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

Ix XS XEXx1 (1)

given by A<0, x> =x, p(x,0) =x.
The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-

gether with two functions

u-MxM—-M, n:1—-M (2)
such that the following two diagrams commute
MxMxM-—2SMxM IxM-T1 oM x MM x|

l l, [; 1 le;(:ﬂ

MxM “ M, M = M = M




Introduction 3

here 1 in 1 x pu is the identity function M — M, and 1 in 1 x M is the one-
point set 1= {0}, while 4 and g are the bijections of (1) above. To say
that these diagrams commute means that the following composites are
equal:

p (Ixpy=p (ux1), wu (Mxh=4, u (Ixn)=p.

These diagrams may be rewritten with elements, writing the function u
(say)as a product u(x. y)=xy for x, ye M and replacing the function 5
on the one-point set 1 = {0} by its (only) value, an element n(0)=ue M.
The diagrams above then become

(X, Y2 )——— (X, yz) <0, x)——<u, x» (x uy +—<x,0)
{xy, z2y—(xy)z=x(y2), X = ux, Xu = Xx.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an element u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities;
for example, one may describe a group as a monoid M equipped with
a function { : M— M (of course, the function x+ x~') such that the
following diagram commutes

M2 MxMESMxM x—{(x, x)—{x,x"'>-

| - |

1 — M O—— u =  xx ',

here 6:M—M x M is the diagonal function x—{x,x) for xe M,
while the unnamed vertical arrow M — 1 = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x e M an element
x~ ! which is a right inverse to x.

This definition of a group by arrows u, 1, and { in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation u of multi-
plication which is continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group
axioms. Again, if the letter M stands for a differentiable manifold (of
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class C®) while 1 is the one-point manifold and the arrows y, 1, and {
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets, of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map 6: M—M x M to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the isomorphisms (1). We can then speak of a monoid in the system
(C, [, 1), where C is the category, [J is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual group of integers;
then (1) is replaced by the familiar isomorphism

Z®X=X=X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism p: M®M—M is, by the definition of ®, just a function
M x M —M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphism n: Z—M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication y in the abelian group M
is associative and has u as left and right unit: — in other words, that M
is indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
by diagrams. If (M, u, n) and {M", ¢', ") are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f: M — M’ such that the following diagrams
commute

M MxM—t—M ——M

LT

M, M xM—~ M/, 1—2 M

In terms of elements, this asserts that f(xy)=(fx)(fy) and fu=u/
with u and «' the unit elements; thus a homomorphism is, as usual, just
a function preserving composite and units. If M and M’ are monoids
in (Ab, ®, Z); that is, rings, then a homomorphism f as here defined is
just a morphism of rings (preserving the units).
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Finally, an action of a monoid {M, u,n> on a set § is defined to be
a function v: M x S— S such that the following two diagrams commute

MxMxS—L>  MxS IxS—L,MxS
R |
MxS 2 5, > S,

If we write v(x, s) = x * s to denote the result of the action of the monoid
element x on the element s e S, these diagrams state just that

x-(y*s)=(xy)*s, u+s=s

for all x, ye M and all s e S. These are the usual conditions for the action
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topolegical monoid M on a topological space S. If we take
(M, u, n) to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module S over the ring M.






1. Categories, Functors, and Natural Transformations

1. Axioms for Categories

First we describe categories directly by means of axioms, without
using any set theory, and calling them “metacategories™. Actually, we
begin with a simpler notion, a (meta)graph.

A metagraph consists of objects a, b, c, ..., arrows f,g.h, ...,and two
operations. as follows:

Domain, which assigns to each arrow f an object a = dom f;
Codomain, which assigns to each arrow f an object b=cod f.

These operations on f are best indicated by displaying f as an actual
arrow starting at its domain (or “source”) and ending at its codomain
(or “target™):

fra—b or abb.

A finite graph may be readily exhibited: Thus -+ —-—-or - 3-.
A metacategory is a metagraph with two additional operations:
Identity, which assigns to each object ¢ an arrow id,=1,:a—a;
Composition, which assigns to each pair (g, /) of arrows with
domg =cod f an arrow g f, called their composite, with g- f:dom f
—codg. This operation may be pictured by the diagram

b
7N\
a7 ¢

which exhibits all domains and codomains involved. These operations
in a metacategory are subject to the two following axioms:
Associativity. For given objects and arrows in the configuration

aLbLcbd
one always has the equality

k(g f=k-g) [ (1)

~
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This axiom asserts that the associative law holds for the operation of
composition whenever it makes sense (i.e., whenever the composites on
either side of (1) are defined). This equation is represented pictorially
by the statement that the following diagram is commutative

kilg-f)=(k=g)-
a_kte N=tkeg-s g

f} gf\ o [k
~

s
b 3 c.

Unit law. For all arrows f:a—b and g:b—c¢ composition with
the identity arrow 1, gives

l,-f=f and g-l,=g. (2

This axiom asserts that the identity arrow 1, of each object b acts as an
identity for the operation of composition, whenever this makes sense.
The Egs. (2) may be represented pictorially by the statement that the
following diagram is commutative:

S

a——b

NG

b—F—c.

We use many such diagrams consisting of vertices (labelled by objects
of a category) and edges (labelled by arrows of the same category).
Such a diagram is commutative when, for each pair of vertices ¢ and ¢/,
any two paths formed from directed edges leading from ¢ to ¢’ yield,
by composition of labels, equal arrows from ¢ to ¢'. A considerable part
of the effectiveness of categorical methods rests on the fact that such
diagrams in each situation vividly represent the actions of the arrows
at hand.

If b is any object of a metacategory C, the corresponding identity
arrow 1, is uniquely determined by the properties (2). For this reason, it
is sometimes convenient to identify the identity arrow 1, with the object b
itself, writing b: b—b. Thus 1, =b=1id,, as may be convenient.

A metacategory is to be any interpretation which satisfies all these
axioms. An example is the metacategory of sets, which has objects all
sets and arrows all functions, with the usual identity functions and the
usual composition of functions. Here “function” means a function with
specified domain and specified codomain. Thus a function /- X - Y
consists of a set X, its domain, a set Y, its codomain, and a rule x+— fx
(i.e., a suitable set of ordered pairs {x, fx)>) which assigns, to each element
x € X, an element fx e Y. These values will be written as fx, f,, or f(x),
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as may be convenient. For example, for any set S, the assignment s—s
for all s e S describes the identity function 15: S—S; if S is a subset of Y,
the assignment s— s also describes the inclusion or insertion function
S— Y;these functions are different unless S = Y. Given functions f : X —» Y
and g:Y—Z, the composite function g- f:X—Z is defined by
(g fx=g(fx) for all xe X. Observe that g - f will mean first apply f,
then g — in keeping with the practice of writing each function f to the
left of its argument. Note, however, that many authors use the opposite
convention.

To summarize, the metacategory of all sets has as objects, all sets, as
arrows, all functions with the usual composition. The metacategory of all
groups is described similarly: Objects are all groups G, H, K; arrows are
all those functions f from the set G to the set H for which f:G—H
is a homomorphism of groups. There are many other metacategories:
All topological spaces with continuous functions as arrows; all compact
Hausdorfl spaces with the same arrows; all ringed spaces with their
morphisms, etc. The arrows of any metacategory are often called its
morphisms.

Since the objects of a metacategory correspond exactly to its identity
arrows, it is technically possible to dispense altogether with the objects
and deal only with arrows. The data for an arrows-only metacategory C
consist of arrows, certain ordered pairs (g, f), called the composable
pairs of arrows, and an operation assigning to each composable pair
{g, f> an arrow g- f, called their composite. We say “g- f is defined”
for “{g, f> is a composable pair”.

With these data one defines an identity of C to be an arrow u such
that /- u= f whenever the composite f-u is defined and u- g =g when-
ever u- g is defined. The data are then required to satisfy the following
three axioms:

(i) The composite (k- g)- f is defined if and only if the composite
k-(g- f) is defined. When either is defined, they are equal (and this
triple composite 1s written as kg f).

(i1) The triple composite kg f is defined whenever both composites kg
and ¢ f are defined.

(iii) For each arrow g of C there exist identity arrows u and u’ of C
such that u'- g and g - u are defined.

In view of the explicit definition given above for identity arrows, the
last axiom is a quite powerful one; it implies that «’ and u are unique in
(iii), and it gives for each arrow g a codomain u’ and a domain u. These
axioms are equivalent to the preceding ones. More explicitly, given a
metacategory of objects and arrows, its arrows, with the given composi-
tion, satisfy the “arrows-only” axioms; conversely, an arrows-only
metacategory satisfies the objects-and-arrows axioms when the identity
arrows, defined as above, are taken as the objects (Proof as exercise).



