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SERIES EDITOR’S STATEMENT

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the nonspecialist, and a
thorough bibliography are required of each author. Volumes will appear in no
particular order, but will be organized into sections, each one comprising a
recognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied but
where it has not yet penetrated because of insufficient information.

Gian-Carlo Rota



PREFACE

This book is the second in a three-volume series, the first of which is Theory of
Matroids, and the third of which will be called Combinatorial Geometries:
Advanced Theory. The three volumes together will constitute a fairly complete
survey of the current knowledge of matroids and their closely related cousins,
combinatorial geometries. As in the first volume, clear exposition of our
subject has been one of our main goals, so that the series will be useful not only
as a reference for specialists, but also as a textbook for graduate students and a
first introduction to the subject for all who are interested in using matroid
theory in their work.

This volume begins with three chapters on coordinatization or vector
representation, by Fournier and White. They include a general chapter on
‘Coordinatizations,” and two chapters on the important special cases of
‘Binary Matroids’ and ‘Unimodular Matroids’ (also known as regular
matroids). These are followed by two chapters by Brualdi, titled ‘Introduction
to Matching Theory’ and ‘Transversal Matroids,” and a chapter on ‘Simplicial
Matroids’ by Cordovil and Lindstrom. These six chapters, together with
Oxley’s ‘Graphs and Series-Parallel Networks’ from the first volume, consti-
tute a survey of the major special types of matroids, namely, graphic matroids,
vector matroids, transversal matroids, and simplicial matroids. We follow
with two chapters on the important matroids invariants, ‘The Mobius
Function and the Characteristic Polynomial’ by Zaslavsky and ‘Whitney
Numbers’ by Aigner. We conclude with a chapter on the aspect of matroid



Xii Preface

theory that is primarily responsible for an explosion of interest in the subject in
recent years, ‘Matroids in Combinatorial Optimization’ by Faigle.

My deepest thanks are due to the contributors to this volume, and to all
others who have helped, including chapter referees. I am particularly indebted
to Henry Crapo for continued support in securing the graphics work for all
three of these volumes. Richard Brualdi thanks the National Science
Foundation for their partial support of his work under grant DMS-8320189.

University of Florida Neil L. White
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1

Coordinatizations

NEIL WHITE

1.1. Introduction and Basic Definitions

The purpose of this chapter is to provide background and general results
concerning coordinatizations, while the more specialized subtopics of binary
and unimodular matroids are covered in later chapters. The first section of this
chapter is devoted to definitions and notational conventions. The second
section concerns linear and projective equivalence of coordinatizations.
Although they are not usually explicitly considered in other expositions of
matroid coordinatization, these equivalence relations are very useful in
working with examples of coordinatizations, as well as theoretically useful as
in Proposition 1.2.5. Section 1.3 involves the preservation of coordinatiza-
bility under certain standard matroid operations, including duality and
minors. The next section presents some well-known counterexamples, and
Section 1.5 considers characterizations of coordinatizability, especially char-
acterizations by excluded minors. The final five sections are somewhat more
technical in nature, and may be omitted by the reader who desires only an
introductory survey. Section 1.6 concerns the bracket conditions, another
general characterization of coordinatizability. Section 1.7 presents techniques
for construction of a matroid requiring a root of any prescribed polynomial in
a field over which we wish to coordinatize it. These techniques are extremely
useful in the construction of examples and counterexamples, yet are not
readily available in other works, except Greene (1971). The last three sections
concern characteristic sets, the use of transcendentals in coordinatizations,
and algebraic representation (i.e., modeling matroid dependence by algebraic
dependence). Some additional topics which could have been considered here,
such as chain groups, are omitted because they are well-covered in other
readily available sources, such as Welsh (1976).

Since the prototypical example of a matroid is an arbitrary subset of a finite
dimensional vector space, that is, a vector matroid, and since many matroid
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operations have analogs for vector spaces, which are algebraic and therefore
easier to employ, a natural and important problem is to determine which
matroids are isomorphic to vector matroids. This leads directly to the concept
of coordinatization. In this chapter we assume that matroids are finite.

A coordinatization of a matroid M(S) in a vector space V is a mapping
(:S—V such that for any 4 =8, A is independent in M<(| , is injective
(one-to-one) and {(A) is linearly independent in V.

Thus we note that a dependent set in M may either be mapped to a linearly
dependent set in ¥ or mapped non-injectively.

We note that {(s) =0 if and only if s is a loop. Moreover for non-loops s
and t, {(s) is a non-zero scalar multiple of {(¢) if and only if {s, t} is a circuit (i.., s
and ¢ are parallel). Thus {(s) = {(¢) only if {s,t} is a circuit, and we see that
non-injective coordinatizations exist only for matroids which are not com-
binatorial geometries. Furthermore, we also see that coordinatizing a matroid
is essentially equivalent to coordinatizing its associated combinatorial
geometry.

If B is any basis of M(S), then let W be the span of {(B) in V. Then dim
W=rk M and {(S)< W. Thus we may restrict the range of { to W, and thus,
without loss of generality, all coordinatizations will be assumed to be in a
vector space of dimension equal to the rank of the matroid. If n is the rank of
M(S), then for a given field K there is, up to isomorphism, a unique vector
space V of dimension n over K. Thus we may also speak of a coordinatization of
M over K, meaning a coordinatization in V.

Let GF(q) denote the finite field of order q. A matroid which has a
coordinatization over GF(2), or GF(3), is called binary, or ternary, respectively.
A matroid which may be coordinatized over every field is called unimodular (or
regular). Further characterizations of these classes of matroids will be given
later in this chapter and in the following chapters.

It is often convenient to represent a coordinatization in matrix form. If {:S —
V is a coordinatization of M(S) of rank n, and E a basis of V, let A, ; be the
matrix with n rows and with columns indexed by S whose a-th column, for
aes, is the vector {(a) represented with respect to E. Since the matrix A4, ¢ also
determines the coordinatization { if we are given E, we often simply say A, pisa
coordinatization of M(S).

1.2. Equivalence of Coordinatizations and
Canonical Forms

If ¢:V >V is a non-singular linear transformation and (:S—V is a
coordinatization of M(S), then ¢<{:S— V is also a coordinatization. If Q is
the non-singular n x n matrix representing ¢ with respect to the basis E
of V, then A,..,=QA, ;. On the other hand, we may easily check that
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Ayorg = A; 4-15> SO multiplying A4, ; on the left by Q may also be regarded as
simply a change of basis for the coordinatization (.

We recall from elementary linear algebra that multiplying A4, ; on the left by
a non-singular matrix Q is equivalent to performing a sequence of elementary
row operations on A, and that any such sequence of elementary row
operations on A, ; may be realized by an appropriate choice of Q. We will say
A, pand QA ; are linearly equivalent (where Q is non-singular), and any matrix
linearly equivalent to A, may be regarded as representing the same
coordinatization { of the same matroid with respect to a new basis of V.

Conversely, given a coordinatization matrix A, z, we may choose any new
basis E' of V, and A ;. is linearly equivalent to A; ;. As a special case of
this, we pick E’ = {(B), where B is a fixed basis of the matroid M(S).

Then, by reordering the elements of S so that the first n elements are the
elements of B, we have a matrix A, ;. in echelon form

B S—B
A;_E,=(I,,| L)

where I, is the n x n identity matrix, with columns indexed by B, and L is an
n x (N — n) matrix with columns indexed by S — B, where N =|S]|.

As yet another way of viewing linear equivalence, let W, be the subspace
spanned by the rows of 4, ;. in an N-dimensional vector space U. What we
have seen is that W, is independent of E’, and that indeed the choice of E’
actually amounts to a choice of a basis for W,. Thus every linear equivalence
class of n x N matrices coordinatizing M(S) corresponds to an n-dimensional
subspace of U. Conversely, every n-dimensional subspace of U corresponds to
a coordinatization of some rank n matroid on S, which is a weak-map image of
M(S).

Remark. Algebraic geometers regard the collection of all n-dimensional
subspaces of an N-dimensional vector space as a Grassmann manifold, and
the coordinatizations of M(S) correspond to a certain submanifold.

Besides row operations, another operation on A, ; which leaves invariant
the matroid coordinatized by A,y is non-zero scalar multiplication of
columns. This may be accomplished by multiplying A4, ; on the right by an
N x N diagonal matrix with non-zero diagonal entries. Combining this with
the previous operations, we say that two n x N matrices 4 and A’ are
projectively equivalent if there exist Q, an n x n non-singular matrix, and D, an
N x N non-singular diagonal matrix, such that A'=QAD.

Let us recall that projective n — 1 dimensional space P is obtained from V by
identifying the non-zero vectors of each one-dimensional subspace of V to give
a point of P. Let n:V — Pu {0} be the resulting map, where 0 is an element
adjoined to P which is the image of Oe V. Then if {:S — V is a coordinatization,



4 Neil White

no{ is an embedding of M(S) into P U {0}, except that parallel elements become
identified in PU {0}. If T':V — V is a linear transformation, let T =noT'on" ",
which is well-defined since T’ preserves scalar multiples. Then we call T a
linear transformation of Pu {0}. Since non-zero scalar multiples in V' are

identified in P U {0}, we immediately have the following:

1.2.1. Proposition. Let J and L be n x N matrices over the field K. Then if J
coordinatizes M(S) and J is projectively equivalent to L, then L also coordina-
tizes M(S). J and L are projectively equivalent if and only if their corresponding
coordinatizations {; and (; determine the same projective embedding up to
change of basis in PU{0}, i.e., no{; = Tone{,, where T is a non-singular linear
transformation of P {0}.

We next ask whether there exists a canonical form for a projective
equivalence class of coordinatizations, as echelon form was for a linear
equivalence class. For a given coordinatization

A=(I,|L)

in echelon form with respect to a basis B, let L* be the matrix obtained by
replacing each non-zero entry of L by 1. In fact, L™ is just the incidence matrix
of the elements of B with the basic circuits of the elements of S — B, so it is
independent of the particular coordinatization. Now let I" be the bipartite
graph whose adjacency matrix is L*. Thus each entry of 1 in L* corresponds
to an edge of I'. Let T be a basis (i.e., spanning tree) of I.

1.2.2. Proposition. (Brylawskiand Lucas, 1973) A is projectively equivalent to a
matrix A" which is in echelon form with respect to B, and which has 1 for each
entry corresponding to an edge of T.

Proof. This may be accomplished by non-zero scalar multiplication of rows
and columns, and is left as an exercise. O

The matrix A’ of the preceding proposition is said to be in (B, T)-canonical
form, or when B and T are understood, canonical projective form. The simplest
canonical projective form and most useful version of this canonical form
occurs when M(S) has a spanning circuit C. Then by choosing B to be C — {c}
for some ceC, the column corresponding to ¢ in L has no zeros, hence we may
pick T to correspond to the n entries of column c, together with the first non-
zero entry in every other column of L.

A major use of this projective canonical form is in actual computation with
coordinates and in presenting examples.
1.2.3. Example. Let M(S) be the 8-point rank 3 geometry whose affine
diagram appears in Figure 1.1. If we choose the standard basis B = {b,, b,, b5}
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Figure 1.1. An 8-point rank 3 geometry.
b,

and spanning circuit C = {b;, b,, b3, ¢}, we may coordinatize M over Q by the
following matrix in canonical projective form:

b, b, by ¢ d e [ g
1 0 0 1 1 1 0 1
0 1 0 110 1 0
0O 0 1 101 —1 2

1.2.4. Example. Let M(S) be the 4-point line, that is, U, ,, the uniform
geometry of cardinality 4 and rank 2, whose bases are all of the subsets of S of
cardinality 2, where | S| = 4. Then any coordinatization of M(S) over any field
K may be put in the following projective echelon form:

1 011

01 1 «
where e K — {0, 1}. Thus we can say that up to projective equivalence, there is
a one-parameter family of coordinatizations of U, ,. We note that this
parameter « is equivalent to the classical cross-ratio of four collinear points
in projective geometry.

Since U, 4 is the simplest non-binary matroid, one might be led to surmise
the following, first proved by White (1971, Proposition 5.2.5), and later by
Brylawski and Lucas (1973) using more elementary techniques. The proof is
omitted here, because of its fairly technical nature.

1.2.5. Proposition. Let M(S) be a binary matroid and K a field over which M
has a coordinatization. Then any two coordinatizations of M over K are
projectively equivalent.

Brylawski and Lucas (1973) have investigated the question of which
matroids have, over a particular field K, any two coordinatizations projec-
tively equivalent. Such matroids are said to be uniquely coordinatizable over K,
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and among their findings is that ternary matroids are uniquely coordinatiz-
able over GF(3) (although not over an arbitrary field, as the example of U, ,
shows).

1.2.6. Example. We return to Example 1.2.3. This example is, in fact, a ternary
matroid, which is uniquely coordinatizable not only over GF(3), but over
every field K such that char K # 2. To see this, we first note that the matrix
given over Q may be regarded as a coordinatization of M over every field
K such that char K # 2. If we take an arbitrary coordinatization of M over
any such field K and put that coordinatization in canonical projective form
with respect to B and C, the elements b,, b,, b3, and c are assigned the vectors
shown, and then the vector for d is determined since d is on the intersection
of the two lines b,b, and bsc. Likewise eeb,bynb,c, feb,bynde, and
geb,bsncf.

1.3. Matroid Operations

We now note that coordinatizability is preserved under various matroid
operations, including duality, minors, direct sums, and, in a restricted sense,
truncation. This material is also found scattered through Chapter 7 of White
(1986), and is collected here for convenience.

1.3.1. Proposition. Let A, ; coordinatize M(S) over a field K, and let W, be the
row-space of A, pin U, avector space of dimension N = | S| over K. Then if M*(S)
denotes the dual matroid of M, the subspace WCL orthogonal to W, is the subspace
of U corresponding to a coordinatization of M*. Thus M is coordinatizable over
K if and only if M* is.

Furthermore, if A i is in echelon form, A, p = (I,, L), then A* =(— L', Iy_,) is
a coordinatization of M*, where t denotes transpose.

Proof. Let B be a basis of M(S) and we may assume A, , is in echelon form with
respect to B, since W, is invariant under linear equivalence. Thus 4, = (I,,, L),
and we note that A* = (— L', Iy _,) has each of its rows orthogonal to each row
of A, g, hence the rows of A* are a basis of W;. Let M'(S) be the matroid
coordinatized by the columns of A*. Since S — B corresponds to the columns

Figure 1.2. A 7-point rank 3 matroid M.
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of Iy_,in A* we see that S — B is a basis of M". Conversely, if B’ is any basis of
M',S — B'is a basis of M by a similar argument. Since B was an arbitrary basis
of M,M' = M* and the theorem follows. O

1.3.2. Example. Let M(S) be the 7-point rank 3 matroid shown in Figure 1.2,
along with a coordinatization A over R given below. Then M*, a rank 4
matroid which is shown in Figure 1.3, has the coordinatization A* over R
as in the preceding proposition.

a b c¢c d e f g
1 001110
A=|0 1 0 1 1 0 1],
00110 11
a b c d e f g
~1 -1 -1 1 0 0 O
A*:—l -1 00100
—1 0 —1.0 01 0
0 -1 -1 0 0 0 1

Figure 1.3. M*, the dual of the matroid M in Figure 1.2, where abfg, aceg, bcef are
coplanar sets.

1.3.3. Proposition. Let M(S) be a matroid.
(1) If M is coordinatizable over a field K, then so is every minor of M.
(2) If M = M, @® M,, then M is coordinatizable over K if and only if both M ,
and M, are coordinatizable over K.
(3) If K is sufficiently large and M is coordinatizable over K, then the
truncation T(M) is coordinatizable over K.

Proof. (1) If A, g coordinatizes M, then any submatroid M — X is coordinat-
ized by deleting the columns of 4, ; corresponding to X. Since contraction is
the dual operation to deletion, (1) follows from the preceding proposition.
For a direct construction of a coordinatization of a contraction, see the
following remark and example.

(2)If AV and A® are matrices coordinatizing M, and M, respectively, then
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AD 0
(o)

is a coordinatization of M = M, @ M,. The converse follows from (1).

(3) The construction of truncation (to rank n—1, say) described in
Section 7.4 of White (1986) may be carried out within the vector space V
provided only that the field is sufficiently large to guarantee the existence of a
free extension (by one point) within V. O

the matrix direct sum

1.3.4. Remark. To construct the coordinatization of a contraction M(S)/X
from a coordinatization A, ; of M, we first choose a basis I of the set X. By row
operations on A,y we may make the first n —k entries 0 in each column
corresponding to I, where k = |I|. Then delete the columns corresponding to
X, as well as the last k rows.

This construction really amounts to simply taking a linear transformation
T from V, the vector space in which M is coordinatized, to a vector space of
dimension n — k, such that the kernel of T is precisely span ({X).

1.3.5. Example. Let M be the matroid shown in Figure 1.4, with coordinatiz-
ation 4 over Q. Let X = {e,f}. Then row operations on A lead to the matrix 4’,
and deletion of the appropriate rows and columns gives A”, a coordinatization
of M/X, which is put into canonical projective form A”. The matroid M/X is
shown in Figure 1.5.

O O O =9

oSO O - O

(= = =

-0 O O
w

O N W =~

AII



