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PREFACE

Among the earliest speculations on the foundations
of geometry we find meny attempts to introduce the
straight lines as geodesics. But no abstract concept of
a metrlic being known, let alone metrics other than the
euclidean and perhaps the spherical, these attempts were
futile.

Today it is not difficult to formulate axioms for a
space In which geodesics exist. This book treats some
of the many problems which arise when one attempts to de-
velop geometry with the geodesic as basic concept. The
problems studied here fall essentially under four topics
which may be listed roughly as Finsler spaces, parallels,
convexity of spheres, and motions.

The choice of these topics 1is, of course, due partly
to personal prefrrence but partly also to the desire to
Impress the reader with the large variety of questions
which fall under the scope of the metric methods. It
goes without saying that there are many unsolved problems,
very different in character and difficulty. A number of
these will be formulated in the text.

The book 1s divided into five chapters, each of
which is preceded by a rather detailed introduction. A
reader who wishes to get information beforehand concern-
ing the whole content 1s asked to turn to these intro-
ductions.

The idea of completing Frechet's axioms for a metric
space, so as to ensure the existence of geodesics, 1s due
to Menger. His results as far as we shall need them, will
be proved in the text. Some‘familiarity with the topolo-
gy of metric spaces is assumed, and theorems on convex
bodies are used. Results of Riemannian geometry will be
frequently referred to for comparison, but not actually
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applied (except in Chapter V §3). All facts from other
theories, if not proved in the text, will be stated in
exact form and reference to literature will be made.

Although Menger was the 'first to study geodesics in
metric spaces, both his and his students' contributions
to the foundations of geometry and the calculus of varla-
tions have so different a trend that the existence of
geodesics plays hardly any role in their work. For that
reason the material presented here 1s almost entirely
different from the theories found in Blumenthal's
Distance Geometries.

Because the topics of this book are interrelated
with several different fields, even a moderately complete
11st of the pertaining literature was impracticable. To
avoid inconsistencies the bibliography contains (with
the exception of Finsler's dissertation) nothing but
references for results actually quoted in the text.

Herbert Busemann
Illinois Institute of Technology
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Chapter I.

METRIC SPACES WITH GEODESICS

Introduction. The geodesics of the Riemann Spaces
and Finsler Spaces which one usually considers have the
following properties:

1) Any two distinct points P,Q can be comnected by a

shortest arc.

2) If the point Q 1s sufficiently close to P, this

shortest connection 1s unique.

3) Any shortest connection between two points 1s

contained in one and only one geodesic.

In the present chapter we glve a set of axioms for
a general metric space which guarantee that properties
1), 2), 3) hold. We first compile the definitions and
theorems on metric spaces which we shall need later. In
Section 2 we formulate the basic axioms A, B, C, D and
show that 1) and 2) hold. In Section 3 we define geo-
desics and prove that they have property 3). Finally
(Section 4) we discuss the topological structure of the
spaces which satisfy axioms A - D and have dimensions
1 or 2. In both cases we shall find that the space is a
manifold. The corresponding question for higher dimen-
sional spaces 1s open.

§1. METRIC SPACE3; NOTATIONS
Points, unless expressed by their coordinates, will
be designated by Latin Capitals. A point set £ 1s a
metric space if a real number XY, the distance from X to
Y (or of X and Y), is defined for every pair X, Y of
points in T and satisfles the conditions:

1



2 I. METRIC SPACES WITH GEODESICS

A1 X =0

A, XY =YX > 0 for X # Y (symmetry)

A3 XY + YZ > XZ (triangle inequality)
Any subset o of a metric space X becomes itself a
metric space, if we define as distance for points X,Y in
o the distance XY of these points in X . Whenever we
speak of a subset © ofa metric spaceX without defining
1ts metric, we 1mply that o 1is metrized in this way.

We say the point Y lies between the points X and Z,
and write (XYZ), when Y 1s different from X and Z and
XY + YZ = XZ. The relation (XYZ) has the following ob-
vious but very useful properties:

THEOREM 1. If (XYZ) then (ZYX). If
(WXY) and (WYZ), then (XYZ) and (WXZ).

The use of the words limlt point, closed set, open
Set being uniform we do not re-define these concepts.
(Definitions and proofs, which are omitted here, can be
found in standard works as HAUSDORFF [2] or KURATOWSKI
[1].) We call the set o in a metric space X bounded,
1f a point P and a number o« exist so that PX { « for
XCo .

" A metric space I will be called compact, if every
Infinite sequence of points 4m % contains a converging
subsequence; finitely compact, if every bounded, infinite
sequence contains a converging subsequence.

We remind the reader of the following facts:

THEOREM 2., A closed subset of a compact
metric space 1s compact. A bounded closed
set 1n a finitely compact metric space 1is
compact. A closed set in a finitely compact
space 1s finitely compact.

THEOREM 3. A finitely compact metric
space I 1s separable, i.e. there is a se-
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quence of points P1, P2, ene AN ¥ , 80
that every point of I 1s limit point of a
suitable subsequence of {P, }.

Consider two metric spaces £ and ='and a mapping
of the subset © of £ onto the subset o of T , 1.e.
for every point X of o the image X' = F(X) of X in o'
1s uniquely determined and F(X) traverses all of o' when
X traverses o, The mapping X — F(X) 1s called

a) continuous, if 1im R, = P , P, s PCO ,

implies 1im F(P,, ) = 1lim F(P).

b) topological, if i1t 1s one-to-one and continuous

both ways. The sets o and ¢ are homeomorphic if

a topological mapping of o onto o' exists.

c) a congruence, 1if

R = F(P) F(Q)

for any points P,Q In o . A congruence 1s a topo-

logical mapping. The sets o and o' are co ent,

1f o can be mapped onto a' by a congruence.

In case I or L' 1s the real axis, special terms
are used. Namely, if = 13 the real axls - o {( t { @
with the absolute value lt1 - t2| as metric, and o the
subset a { t { b, a {( b, of I, then a continuous image
of I 1s called a continuous curve in X' , a topologic-
al image of £ 1s an open Jordan curve in ¥ . A set
congruent to ¥ will be called an open straight line.
Menger uses the simpler term stralght line. We shall use
this word in a wider sense.

Furthermore, a continuous image of ¢ 1s a continu-
ous arc (in t' ); a topological image of o 1s a Jordan
arc. We follow Menger in denoting a set congruent to o
as segment.

We see from the definition that a segment admits a
representation of the form P(t), a £t {bwith
P(t1) P(tz) = It1 - tzl' Such a representation of a seg-
ment will be called isometric. If P(t), a g t{b, is an
isometric representation of a segment o we call A = P(a)
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and B = P(b) the endpoints of o , and say that o con-
nects A and B. This definition does not depend on the
choice of the isometric representation of o because A
and B can be characterized by the property that (AXB) for
every point X # A,Bof ¢ . The notation AB will be
used for any segment with A and B as endpoints. It is
convenient to put AA = A, Of any three points on a seg-
ment one 1s between the two others.

If E' 1s the real axis, and X — F(X) = X' maps
the subset o of the metric space I onto the set o' in
iy » then F(X) becomes a real valued function of the

point X, with o as domain of definition and o' ag
range of F(X).

Many known theorems on functions of real variables
can be extended to mappings of metric spaces. We shall
need only:

THEOREM 4. If X — X' = F(X) is a
continuous mapping of o onto o', and if
¢ 1s compact, then F(X) is uniformly con-
tinuous; i.e. fora given € > 0a 6 > 0
can be found such that F(P) F(Q) € as soon
as Q { 6§ ,

and
THEOREM 5. A continuous real-valued
function F(X), defined on a compact subset o
of a metric space reaches its minimum and its
maximum,

As distance o~ (or d( o , v ) when there is a
possibility of taking o+t for the intersection of o
and T ) of two subsets o and T of a metric space &
we define the greatest lower bound of the distances XY,
where X traverses o and Y traverses = . We would ex-
press this definition in a formula as
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oT = Inf XY
Xeag; Yet

In particular Po = )%gi(‘y PX will be the distance
of the point P from the set o .

THEOREM 6. For an arbitrary set o and
any two points P,Q we have

(1) |[pPe -Qo | { R

Consequently the distance Xo 1s a continuous function
of X.

PROOF., let F,, and G, , Vv =1, 2, ... be (not
necessarily different) points in o with PF, — Po
and QG, — QO .

Then

Po - Qo < 1lim PG, - 1lim QG,, { R
and

Qo - Po gl___imQFv - 1lim FF, { R

In case o contains a point F with PF = Po we call
F a foot of Pon o. We have

THEOREM 7. If o 1s a (non-empty)
finitely compact subset of Z , then every
point P has a foot on o.

PROOF. let Q be any point of o, then
(2) Po { R

There is either a foot of P or a sequence of points
F, in o with

PFV — Po
The sequence {FF,, | 1s bounded because of (2), therefore
{F, | 1s bounded and has an accumulation point F in o ,
because o is finitely compact. It follows from the
last theorem that F is a foot of P.

THEOREM 8. If every point P of the set
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T has exactly one foot F on the finite-
ly compact set o then F depends contin-
uously on P, when P .arles in .

PROOF. Let P, — P, P, ¢ T s v =0, 1,2,
... and let F,, be the foot of P, on o . The sequence

F F .+. 13 bounded because

17 =~ 22

PF, {P,F, +P P =Po +P P
gPOo + 2P Po .

Every accumulation point of {F, | belongs to o because,
being finitely compact, o 1s closed. There are ac-
cumulation points F because o 1s finitely compact.
Each F is a foot of Po on account of Theorem 6, hence
F=FO and 1j_va = Fas

The same polntset £ may carry different metrics
AB and d(A,B). These are called topologically equivalent,
when they lead to the same 1imit concepts, i.e. when
AA, — 0 1f, and only if, d(A,A,, ) — 0. If a limit
is already defined in X (for instance in terms of AB)
then the introduction of a metric d(A,B) which leads to
the same 1imit concept, 1s called a metrization of s .
Metrizations are most frequently obtained in this way:
Let X — X' = £(X) be a topological mapping of the metric
space I onto the metric space £'. Then 4(A,B) =
f(A)f(B) 1s a metrization of & .

Next we discuss the arclength of continuous curves.
(The definition and properties la,b,c,d,e) of the arc-
length are due to Menger [1,3,4] who studies mmuch more
general cases than ours.) Let ¢ : P(t), a {t<{b, bea
continuous arc. Take any subdivision

A a=t <t <ty Cuun (b=

of the interval (a,b) and form
n—1

L(a) = iZO P(ti)P(ti+1).
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The least upper bound of L(A ) as A traverses all sub-
divisions of (a,b) 1s called the arclength or simply the
length L(c) of ¢ ( oo admitted).

For every sequence a, = (ti,--- ’ t:L ) of
1 1 n,y

subdivisions of (a,b) with

1im

{ max (t% -t ) =0

=1

we have
PROPERTY L a) L( Ai) — L(e)

For, obviously

L( Ai) £ L{e)s
For a given € > 0let A = (tgs «ee, t,) be a sub-
division of (a,b) with

L(b8) > L(c) - §- (L(a) > N+§2-when L(c) = o )
The interval (a,b) being compact it follows from Theorem
4 that a 6 0 exlsts such that

(3) P(t)P(t') { g5 for |t-t'| { 6 .
We now choose 1 so large that

1,1 1 - -
1;;2;1 (tj'tj-1) < 3 min(3¢ , t',1 to, eoes G-t )
For a given tk let t% be one (of the possibly 2) t%

k
which has the minimal distance from t
We have

i ak 1
b~ t ¢ d t7; t
l k Jkl < an Jk < jk+1

K
s k=10, ...,n-1,

Hence
i 1 - i
L(8,) 2 ZP(tjk)P(tij) 2 2 P(t)P(ty,,) 2T )R(ES )

2 L(a)-ongy > L(e)-e .

This proves L a), s

From L a) we conclude that the arc length 1is
additive:
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PROPERTY L b). If a < d { b and c,
and c, designate the subarcs a { t { d and
dstgbofc=P(t),'aStSb, then

L(c,) + L(c,) = L(c)

The same point set may carry different continuous
curves. since it may appear in different ways as a con-
tinuous imaxe of an interval. (These curves will in gen-
eral have different lengths. The usual discussion as to
which changes of the parametrization do not charnge the
length, can be applied without change to metric spaces.)
When we say the points P(t), a S £ g b of a continuous
curve form a segment, we mean that the set of all points
P(t) can be mapped congruently onto a closed interval of
the real axis, but we do not imply that P(t) — t 1s such
a mapping (isometric representation). .

PROPERTY L c¢). For every continuous
curve ¢ = P(t), a { t { b we have
(4) P(a)P(b) £ L(c)
and if the equality sign holds the points P(t)
form a segment. If the points P(t) form a
segment and if P(t;) = P(t,) for t, < t, im-
plies P(t) = P(tl) for t, £t t, the equality
sign holds in (4).

PROOF. We have for every subdivision A =

(to, . 08y tn):

P(a)P(b) { 2 P(ty)P(ty ;) £ L(e).

If P(a)P(b) = L(c) we have P(a)P(b) = 2 P(ti)P(t1+1) for
every O therefore

(5) P(E")P(t'') 4 P(t'")P(t''') = P(t')P(t''') for any
1t (L', We now map P(t) on the point < =
P(a)P(t) of the interval 0 { v { L(c). Iet 0 {t, < t,
and P(O)P(ti) = T, 1=1,2, It follows from (5) that
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P(t1 )P(te) = P(a)P(te) = P(a)P(t1) =T,-T,

which proves that the P(t) form a segment. P(t1) =
P(t,) for t, < t, may occur; for (4) implies in this case
only that P(t) = P(t1) for t, £t¢ t,.

This justifies the last part of L ¢). To prove it
let t' { t'" { t''', If two of the corresponding points
P(t( 1 )) colncide, (4) follows from our assumption. If
the points are different we have eilther:
(P(E*)P(E"')P(t''')) or (P(t")P(L''")P(t'')) or
(P(t'")P(t")P(t''")) since the points belong to a seg-
ment. The last two relations are impossible. For in the
case of (P(t')P(t''')P(t'')) we would vary t from t' to
t''" and thereby pass a value t* for which P(a)P(t*) =
P(a)P(t'''). Since the P(t) form a segment we must have
P(t*) = P(t'''). Hence we should have P(t) = P(t''') for
t* { t g t''! according to our second assumption; but
P(t'') # P(t'''). We see that (5) holds and herewith
L(Aa) = P(a)P(b) for every A .

It follows from c) that a segment 1s a shortest con-
nection of its end points, and that the points of any
shortest connection of two points form a segment, if a
segment jolning the two points exists.

PROPERTY L d). Lower semicontinuity of
the arc length. Iet ¢, =P, (t), a, £t<
b, , v= 0,1,2,... be continuous arcs, with
a, — &, s b, — bor' P, (a.v ) — Po(ao)

B, (b, ) —-»Po(bo) and P, (t)— P (t) for
a, <t<« bys then
(6) 1im L(c, ) 2 L(c,).

PROOF. Choose for a given ¢ » 0 or N a subdivision
a,=t, (t (...(t = by of (a,,b,) so that

n-1
& Polte Rty ) >§L(°N) " F gi;g ; (e
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For 1e.rge v we have t, > &, and t,., < b, hence
V
putti_ngt v,1:;'1=bv,‘1=1;1for1=;40,n
n=1

Vv v
°y )2 Z Py (83)Fy (g,4) = 2 Boltg)Po(ty,)
i=0 1=0
Now (6) follows from the arbitrariness of € or N.

PROPERTY L e). ZExistence of a minimum.
In the finitely compact metric space = let
a continuous arc of finite length from A to
B exist. Then a continuous arc ¢ from A to
B exists whose length i1s smaller than or
equal to the length of any continuous arc
from A toBin T .

PROOF. Call b the greatest lower bound of the
lengths of all continuous arcs from A to B. There is a
sequence of (not necessarily different) arcs ¢, from A
to B, so that b, = L(cy, ) » b. On ¢, We may intro-
duce the arc length s as parameter because the length
is thereby not increased. We may thus get the repre-
sentatlon P, (s), 0 { s £ by, , P, (0) = A,P, (b, ) =
B for ¢, . For every s, witho¢s,6 ¢ b, the se-
quence of points P, (s, ) is bounded on account of L c).

Let Py Tpy eee be the sequence of rational numbers

between 0 and 1. We choose the subsequence {1, I of
{ v] so that the points P (r ) converge, then in
{1, | a subsequence {2, f S0 tha.t the points P, (rpb )

converge and so forth. We form the diagonal sequence
P, ~(8). We conclude from the triangle inequality that
va (s) converges for every s between 0 and b, to a
1limit point P(s) and that P(s), o { s { b is a continuous
arc ¢ from A to B. We see from the definition of b that
L(c) 2 b and from L d) that

b = 1im L(c ) 2 L(c),
so that L(c¢) = b, q.e.d.



