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FOREWORD

During the five days 23rd-27th July 1984 in Guanajuato, Guanajuato,
‘México, the Institute for Research in Applied Mathematics and Systems
(IIMAS) of the National University of Mexico (UNAM) held its Fourth
Workshop on Numerical Analysis. As in the first three versions in

I§78, 1979 and 1951, the program of this research workshop concentrated
on the numerical aspects of three main areas, namely optimization,
linear algebra and differential equations, both ordinary and partial.
J.H. Bramble, J.R. Cash, T.F. Chan, J.E. Dennis, Jr., J. Douglas, Jr.,
H.C. Elman, R. England, R.§. Falk, D. Goldfarb, A. Griewank, S.P. Han,
J.P. Hennart, A.V. Levy, R.D. Skeel, M.F. Wheeler and M.H. Wright were
invited to presente lectures. In total 29 papers were delivered, of
which j8 are offered in theée Proceedings.

Like the Third Vorkshop, this one was supported by a generous
grant from the Mexican National Council for Science and Technology
(CONACyT) and the U.S. National Science Foundation, and was part of the
Joint Scientific and Technical Cooperation Program existing between
these two countries. In relation to this essential funding aspect, it
is a pleasure to express again my thanks to R. Tapia, of the Mathemati-
cal Sciences Department at Rice, for his continual advice and help prior
to the workshop. This time in particular, as the confirmation of the
funding was very close to the beginning of the workshop, his role was
fundamental in providing us with the above excellent list of invited
speakers from the U.S.

"My thanks also go to S. Gémez of IIMAS for the enthusiasm and
energy she displayed at the local arrangements level, to my colleagues
of the Numerical Analysis Department for their friendly cooperation and
to IIMAS for its continuous support. Finally, I would like to acknow-
ledge the invaluable help of Ms. A. Figueroca in the typing and retyping
needed to transform a set of manuscripts into book form.

Mexico City, November 1985

J.P. HENNART
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A GLOBAL ZERO RESIDUAL LEAST SQUARES METHOD : i

S. GOMEZ, A.V. LEVY and A. CALDERON
IIMAS-UNAM, Numerical Analysis Dept.
Apartado Postal 20-726
01000 México, D.F.

MEXICO

INTRODUCTION
In this work we want to find the least squares-solution of a system

of nonlinear equations
fi(x)=0 i'=1,...,m

where xG]Rn, fi:]Rn-' R and m2n. To solve this problem we seek for a
minimum of the function F(x), that is

min F(x)=£l(x) £(x)
xX

In general there will exist local minima x* of this function with
small residuals (F(x*)+#0), but in this papef we shall assume that the
zero residual solution (F(x*)=0) also exists. It is this global solu-
tion the one that is of interest in the present work and will be re-
ferred as the global least squares solution. In order to avoid all
local minima of F(x) we shall use a deflation technique called the
tunneling function which preserves the global solution of F(x). In
order to find this solution the Gauss-Newton Method will be used.

The present method is not only able to avoid local solutions but
also has the nice property of handling rank one defiencies of the
_ Jacobian J(x) of f(x), which is a typical difficulty for the Gauss-.
Newton Method. ‘

1. STATEMENT OF THE PROBLEM

We want to minimize a sum of squares

min F(x)=£T(x) £(x) A (1.1)
X

If J(x) is the Jacobian of f(x), then the gradient of F(x) will be

g(x) = 207 (x) £(x) ; (1.2)



Problem (1.1) has a local solution at x* if
JT(x*) £(x#*) = 0 _ (1.3)
and it is the global zero residual solution if
k) = Fl(x# %) =
F(xa) = f (xG) f(xG) : 0 (1.4)
1 Gi(x) is the Hessian of fi(xL then the Hessian of F(x) will be

m
G(x) = 2JT(x) J(x)+2 I £,(x) 6 () (1.5)
: i=1

In practice, for small residual and for zero residual problems

G(x) = 20T(x) J(x) (1.6)

It is this approximation the one we shall use in the present work.

2. THE TUNNELING FUNCTION CONCEPT

In order to avoid the local solutions of problem (1.1), we will
now solve
min ¢ (x) = TT(x)T(x) (2.1)
X

where T(x) is the tunneling function defined as

! £f(x) £(x)
T(x) 3 z (2.2)
[ (x=xP) T (x-%P)] K (Hx-po:)k
and its Jacobian
Y 2k pyT
T (x)=————————j J(x) - —————— fx)(x-x) (2.3)
i qu%:) wxqﬂq>

Obviously if the parameter k is zero then T(x)=f(x) and T (x)=J(x).
Also it is clear that, Tx(x) is the Jacobian of the original function
J(x) plus a rank one matrix. From the definition (2.2) it is very easy
.t° show that the global solution for ¢(x), ¢(x6)=0 is the global solu-
tion for the original problem F(x5)=0.

3. FEATURES OF THE ALGORITHM
3.1 The Gauss-Newton Step

The Gauss-Newton step for solving problem (1.1) will be

T TIp = ~J)I TECxY (3.1)



and in order to avoid ill conditioning of J(x)TJ(x), a better definition
of p is obtained by finding the least squares solution of

J(x)p = ~f(x) . (329
where p minzmizes nva+fﬂ2.

‘ The same consideration applies for solving problem (2.1), getting the
'Gapss;Nthon step for the tunneling function

Tx(x) p = -T(x). g hich B

In order to obtain the solution of the systems (3.2) and (3.,3) we can
use the singllar value decomposition of J and T:

J=u [%] v, if k=0
or
T=U E]VT S i€ KAQ

where S=diag(ol,oz,..,cn) is the matrix of singular values with ci>[L
" U is an mxm orthogonal matrix and V is an nxn orthogonal ‘matrix. Then
the least squares solution for systems (3.2) and (3.3) are given by

. or

po= VSTAVTE liifik 200
p= -vs~WIT , if k%0
where
g g—- if 0.#0
S-l »- j ]
( 0 if 9. = 0
j

3.2 Parameter Computation

We start the algorithm using the step for the original system de-

fined in Eq. (3.2), until we reach a point say xP

» at which one de-
tects either a rank defficiency of the Jacobian J(xP) (singular point)
or 'a local solution JT(xp)f(xp)=0 (eritical point). At this point xP,
we deflate the original system using the tunneling function Eq. (2.2)
(in practice this means that k will take a value different from zero,
creating a pole at xP with strength k). We then proceed using the

step defined in Eq.'(3.3).



Starting with k=0.1 and increasing k with Ak=0.1, the algorithm
computes the appropriate non zero value of k to get a descent Gauss-
Newton step for T(x). To avoid division by zero when using Eq. (2.2)
and (2.3), the above Gauss-Newton step is computed at the point

% = %P .+ er " (3.4)

where € is a very small parameter so that x is in a neighborhood of xp,
and r is a random vector !}E(-l,ll. Good ‘results are obtained if €=0.1,
See Ref. [1] for detailed description of the parameters.

Once k is non zero, according to Eq. (2.2) if Il x-xPll becomes larger
than one, the éhape of T(x) becomes very flat, slowing convergence.
Therefore, if at some iterand x, the distance Hx-poz> 1, we move the
position of the pole xP along the vector (x-xFP) so that llx-xPlize. In
this fashion we shall always have

lx - x"n2 US4 ) (3.5)

In the other hand, having "x—xpﬂz<1 and k#0 leads to a situation
where HT(x)":> "f(x)ﬂ:=F(x). Therefore, in order to improve convergence,
by reducing T(x) it is desirable to reset k to zero as soon as possible
and then proceed on the original system using the step defined in Eq.
(3.2). This can be done whenever the norm of the residuals F=Hf(x)u:
drops below the level of the norm at the point where k was increased
from zero. -

3.3 Main Features of the Algorithm

We want to point out here the main features of the algorithm which

are:

a) It can handle rank-one defficiency of the Jacobian (singular
points).

b) It does not stop at local solutions, and proceeds until it
gets the globél solution.

Briefly let us see how the tunneling idea achieves these features:

’

a). At singular points where the Jacobian has a rank-one deficien-
¢y, the solution J(x)p=-f(x) is not unique (p is arbitrarily
large), but if we choose x, so that (x-xP) is not orthogonal
to the null space of J(x), then Tx(x) has full rank and
Tx(x)p=—T(x) can be solved.



b) At critical points JT(x)f(x5 0, the Gauss Newton step of

. Eq. (3.1) is not defined. However, as stated in section 3.2
when this occurs k takes a value dlfferent from zero; then the
expression

T)'(T(x)T(x)= T F o) (x-xP)fT(x)f(x)] (3.8)

1 [ g
(-2 P
shows that (T, (x)T(x)*O unless x is the global solution, that
is f (x)f(x)=0, and therefore the Gauss-Newton step Eq. (3.3)
is well defined, and since it. is adescent direction for problem
(2.1), the algorithm prbceéds to the global solution.

There is another'featurq of the algorithm which is worth mentioning:
when k is different from zero (because of a detection of a singular or
d critical point somewhere before), the algorithm does not necessarily
detect at %At JT(x)f(x)=0 because T, T(x)T(x)’*O This fact is 1mpor
* tant because ‘the method approaches the global solutlon without the need -
to locate local solutions as was the case .in our previous work in global
optimization, Ref. [2], [3] and [4].

_The value of k is calculated to get a descent Gauss-Newton step for
system (2.2), but if k is not suff1c1ently large, one could also reach
.a critical point of the system T(x), that is

- Ty (%) Trex) = 0
which is not a critical point of system F(x), that,is T TEG) # 0
However, from Eq. (3.6) it can.be seén'that increasing k will be
enough to get

5 :
T, (X)T(x)# 0.

Geometricaliy it means that for k sufficiently large the error
function ¢(x)=T?(X)T(x) stretches’ out.

4. Numerical Examples

Several numerical examplés were solved, in order to test the method,
which are reported in Ref. [1]. In this paper we illustrate only one of

those examples.



Consider the problem (Cragg-Levy)

AL (exl-xz)z
o 3
f2 = 10(xz—x,) »
f = [sen(x -x )/cos(x +x )]?2 (4.1)
3 3 - & 3 4
Syl
fk =Xy
£l gHad
. 5 .

for which we have found the following local minima

x=(0,1,0,0) with £l(x)f(x)=1.01x10?
x=(0,1,1,0) - =6.8 x10°
*x=(~-0.631,050,0) 2 —Sals b (4.2)
x=(0>.552,2,2,2) : 5 =1.01x10°
S s SRl oL ) ! =4,07%x10?

and the global minimum
£T(x)E(x) = 0 at x=(0,1,1,1) (4.3)
The above local minima were found using a Levenberg-Marquard algo-
rithm (Moré's version) when the following initial points were used

x; = (0505050, . (0,156505)3 " (Q3151,0)
(1,2,2,2), (-1,-2,-2,-2)

(4.4)

Obviously at the local minima the Levenberg-Marquard algorithm ter-
minated since it is a local method.

The tunneling algorithm starting from the same initial points (4.4)
arrived at the global solution requiring the computing effort given in
the following table:

Initial Point Iter fn Jac

(0, 0,70, 0) 6 9 8

(05 15 s ) 8 11 10

(05157 158D) 7 10 9 Final error 107°¢
(§si23 207 19) 8 13 10

(-1,-2,-2,-2) 3 12 10

TABLE I. Numerical results for example (4.1), showing the recuired
number of iterations, function evaluations and Jacobian evaluations for
the present method to reach the global zerc residual solution.



On its way to the global minimum the present method detected the
following points as "singular": where there is a: rank defficiency of
the Jacobian

%=(0,0,0,0) with £1(x)f(x)=2x10°
®=1(1,2:2 52 : =2.,26%10° (4.5)

RSy =2 e o 0Ty ‘ =4 ,1x10"?

however, by automatically increasing the value of the parameter k at ' -
these points, the method was able®to get the global solution.

5. CONCLUSIONS

In this paper another application of the tunneling concept to least
square problems is presented. To arrive to the global zero residuals
least squares solution of the problem the Gauss-Newton method is used
as the ‘basis of the algorithm, and the tunneling mapping is employed to
deal with singular or critical points for which *he Gauss-Newton step
Eq. (3.1) would not be defined. The numerical results clearly illus-
trate one of the basic properties of this method: if the pole strength
k is sufficiently large the local solutions of the original problem are
smoothed out and the Gauss-Newton displacements move towards the global
solution.

We only outline here the basic ideas, a full description of the
algorithm and the behaviour and sensitivity of the parameters can be
found in Ref. [1]. :

6. AN IDEA IN PROGRESS

In section 3 we pointed out as one feature of the algorithm, the
local stretching of the function, qpncelling the critical points.

Another-idea that presently is being explored, is that of a pole
supported on a hypersphere.
Sy g .

' In previous papers on global optimization, Ref. [ 2] 03] [ul' the
tunneling function has been used to deflate unwanted local minima of a
function f(x) at x* using the expression

£(x) - (x*)

_ , (6.1)
[(x-x*)’r(x-x"‘)]'k

T(x) =




-

and during the tunneling phase a zero of T(x) is sought, to get a start
ing point of the next minimization phase.

If the solution of T(x)=0 is not found witHin a specified CPU time,
the assumption is taken that probably the global minimum has been found
at x* and the global optimization algorithm terminates.

Obviously this is only a necessary but not a sufficient condition
for global optimality.

In order to increase the confidence, that really a solution‘pf'
T(x)=0 does not exist, on the basis of a finite CPU time allocation,
and idea that seems promising is to use a different mapping function
instead of Eq. (6.1), defined by '

T(x)
T(x) = (6.2)
[R’-(x-—x*)T(x—x*)lk

We note that in Eq. (6.2) a smoothing effect on T(x) accurs not by
. the action of a single pole at x* (as it was using Eq. (6.1)), but by
a region of poles located at the boundary of the hypersphere of radius
R.

This smoothing effect can easily be seen in Figs. 1 and 2, where
the zero of 'the pulse like function is preserved by the mapping Eq.
(6.2), and yet the function has been smoothed within the interior of
the hypersphere ihcreaéing tremendously the zone of attraction of the
zero.

Obviously, we are expressing here only the concept of an "idea in
progress" and for conclusive numerical results, we shall have to wait
for the next IIMAS workshop.
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Figure l1a. Original pulse-like function, with zeroces near the origin

and multiple singular points that cause a small region of attraction to
the zeroes ' )

20 i L
T(x) = -10[ 2 (X sin(nn/36) cosGad}+ Z sin(n/36)] +8
n=1 3

[
5P
O
T X)
§ -
o 1 i 2
-3 -2 i 3 ;z

Figure 1b. Effect of the Mapping T(x) on T(x), Eq. (6.2) with R=2, k=2,
x*=0. The zeroes near the origin are preserved, while the singular
points are smoothed, causing the region of attraction of the zerces to
increase. ]



