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Preface

After many years of development, systems ecology is having a large
impact upon all aspects of environmental research. The system approach
with its body of concepts and techniques has broadened the ecologists’
perspectives and has attracted students into ecology from other disci-
plines. Their common ground is systems science and ecological theory.
Their goals have been the establishment of a sound theoretical basis and
the development of mathematical models. Unfortunately, there has been a
lack of communication between theoreticians, and modelers and field
ecologists. Modelers have dealt almost exclusively with difference and
differential equations to model ecosystems and to produce simulations,
computer solutions of the equations, that could be used for forecasting.
They approached the problems of model development, simplification,
identification, and analysis on an ad hoc basis. Theoreticians worked on a
theory of modeling, but their concepts seldom were used in complex
modeling exercises. Perhaps the language of system theory was too
mathematical for many ecologists to understand and apply.

The purpose of this book is to try to bridge this gap. It is to present to
theoretical systems ecologists and other theoreticians in systems science
recent advances in the field. Since the language of system theory is
mathematics, many chapters are mathematically sophisticated. It is also a
purpose of the book to present to scientists, who do not have the back-
ground to follow mathematical concepts, some aspects of systems ecol-
ogy with which they are not familiar in a way they can understand and
apply. The examples at the end of each chapter have this function. They
show how theory can be used successfully and fruitfully to improve the
development and analysis of models.

Notation has been kept uniform as much as possible, given the differ-
ence in topics included in the book. References have been spelled out to
allow easy access to information complementary to that presented here.
To demonstrate that a set of data contains information that can be ex-
tracted with system techniques and used at different stages of model
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Xvi Preface

construction and usage, three authors (Beck, Ivakhnenko, and Singh),
have used data from the river Cam in England. To show how systems
ecology has evolved in places other than North America, authors from
nine countries contributed to this effort.

Three classes of problems are analyzed in the book: (1) Selection of
components comprising the system model. The first two sections. deal
with theory of modeling, formalisms, classes, and properties of models.
(2) Definition of the relationships and interactions between the system
variables. The section on Identification deals with the problem of extract-
ing information from data for the purpose of deriving the model structure.
(3) Model analysis. Several sections cover this aspect. To represent
current trends, several chapters on stability and control theory are in-
cluded.

This book was conceived in the stimulating research environment of the
Canada Centre for Inland Waters, and I am grateful to Floyd C. Elder and
Theodore J. Simons who provided a sheltered climate for unencumbered
research. I am grateful to Lawrence R. Pomeroy, Bernard C. Patten, and
Rolf E. Bargmann, who directed me and helped to bring out and develop
my true research interests. I have come to appreciate the theoretical
aspects of systems ecology during the several years I spent with the
systems ecology group at the University of Georgia. Together with Ber-
nard C. Patten, Jack B. Waide, Jack R. Webster, and William G. Cale
provided me with guidance in the difficult art of ecological modeling.

I thank all the authors for writing, and rewriting the chapters until the
referees and myself were satisfied. It was a pleasure to act as their editor.
Many persons contributed their ideas, talent, and time. Most of the
following also acted as referees: L.. J. Bledsoe, W. G. Cale, M. Conrad, J.
J. Duffy, J. T. Finn, B. S. Goh, J. Harte, A. G. Ivakhnenko, C. Jeffries,
D. P. Lettenmaier, S. H. Levine, M. McLean, J. Orava, B. C. Patten, D.
Sahal, D. Siljak, R. V. Thomann, R. E. Ulanowicz, V. Watson, J. R.
Webster, and B. P. Zeigler. Ms. J. Fleet, Ms. V. Hamilton, and Ms. N.
Snelling helped with the typing and other clerical tasks.

My wife Silvia gracefully put up with all the pressures during the
organization of the book.

Efraim Halfon
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1. INTRODUCTION

A system may be defined as a set of elements standing in an
interrelation among themselves and with the environment. It is generally
agreed that a “system” is a model of general nature, that is,.a conceptual
analog of certain rather universal traits of observed entities. In other words,
system-theoretical arguments pertain to, and have predictive value,
inasmuch as general structures are concerned (von Bertalanfly, 1972). As’
researchers in other disciplines have done before, ecologists have turned to
the system approach (e.g., Van Dyne, 1969; Patten, 1971; Odum, 1971).

The system approach is based on the evidence that certain system
properties do not depend on the specific nature of the individual system,
that is, they are valid for systems of different nature as far as the traditional
classification of science (physical, biological, social) is concerned (Klir,
1972). Therefore, sophisticated procedures developed for the analysis of
complex systems, mainly electrical, can now be applied to ecological
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2 Efraim Halfon

systems where analytical methodology is far less advanced. When
guantitative formalisms such as algebraic or differential equations are used,
the similarity of different systems becomes a subject of interest. A model is a
conceptualization of the real system; they are similar. Usually a model
cannot be considered a unique representation of the real system. Indeed an
infinite number of models may be conceptualized. When a model is built,
the similarity relation must be understood and quantified.

Compartmental analysis is a phenomenological and macroscopic
approach for modeling physicochemical process. A compartment (or state
variable, object, element, etc., according to the different terminologies
common to systems theory) is a basic unit of functional interest. It may be a
species of algae in a lake, all plankton, or the whole lake itself, depending
on the study goals. The choice of the compartment may be arbitrary, but
any decision made at the carly stages of model development will influence
all of the other results. This choice of the compartment defines the relation
between models and systems. This is the aggregation problem.

The second main topic of interest in model development is the system
identification problem; the study of relations among compartments. The
formulation of a correct model structure is as important as the solution to
the aggregation problem. Most of the volume (13 out of 20 chapters) is
dedicated to these problems of model development. It is my belief that a
solid theoretical foundation is important if we want to continue to progress
in the systems analysis of ecosystems. The concept of similarity is crucial to
any form of general systems theory and thus crucial to the understanding of
a theory of modeling of all systems and, particularly in this instance, of
ecological systems.

This volume contains four major parts and their sequence follows the
usual course of thinking in system science.

Part I discusses some fundamental system problems and focuses on
the aggregation problem and its relation to sampling activities. Here some
theoretical foundations are laid. Problems related to model development
are analyzed.

Part II includes information on modeling approaches and philosophy.
The emphasis here is on model structure and includes formalisms, classes,
and model properties. Three main topics in this part are hierarchical
models, structure properties, and the relation of causality to model
structures.

Part III introduces methodologies and computer techniques of system
identification. These methods, however, cannot be separated from the
modeling philosophies of their originators: Klir and Ivakhnenko present
their inductive approaches to general systems theory and their identification
methods reflect their respective beliefs.
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Part IV contains studies on model analysis, and the focus is on
structural properties, such as stability, flow analysis, and general systems
properties. The other topic of interest in this part is the applicability of
control theory to ecological models. Goh presents the basics in Chapter 15,
followed by more sophisticated applications (Chapters 16 and 17).

2. AGGREGATION AND ORGANIZATION

“A model which must be capable of accounting for all the
input—output behavior of a real system and be valid in all allowable
experimental frames can never be fully known” (Zeigler, 1976). This model,
which Zeigler calls the base model, would be very complex and require such
great computational resources that it would be almost impossible to
simulate. For ecosystems, the base model can never be fully known because
of the complexity of the system and the impossibility of observing all
possible states. However, given an experimental frame of current interest, a
modeler is likely to find it possible to construct a relatively simple model
that will be valid in that frame. This is a lumped model. It is the
experimenter’s image of the real system with components lumped together
and interactions simplified (Zeigler, 1976).

Modeling an ecosystem requires knowledge of the real system,
obtained with experiments, and its abstraction within a mathematical
framework. Systems methods can be used effectively in the latter phase of
model development. Indeed, when coupled with experimental work, system-
theoretic concepts can help in the development of an ecologically realistic
mathematical model. The state space approach is the most widely used in
modern systems analysis because it allows description of both observable
and unobservable variables. The models are memoryless and nonanti-
cipatory and the state of the system is predicted using information on the
present state and inputs to the system.

How do we choose the state variables and what kind of errors
originate when we develop a homomorphic model? The problem is that
ecosystem models have been developed a priori as aggregations without
regard to the consequences of that aggregation. According to Zeigler
(Chapter 1), the organization of simulation models is accomplished by
considering several elements and their relationships. These elements are a
collection of experimental frames, the real system, and the domain of
possible models. The experimental frames specify the restrictions on
experimental access to the real system. The models are assumed to be
transition systems which are specifiable at various levels of structure and
behavior and within short-hand conventions (e.g.,, sequential machines,



