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INTRODUCTION

As used here the term “Analytic Topology” is meant to cover those phases of
topology which are being developed advantageously by methods in which con-
tinuous transformations play the essential role. In the process of evolving,
coming of age and assuming more stabie form, topology, through interaction
with other branches of mathematics, not only is Jeaving its mark on them but is
itself adopting more and more the language and symbolism of the older fields.
Thus, for example, we have not only a topological function theory giving the
results of aualysis which are essentially topological in character, but also a
function-theoretic topology dealing with topological situations with the aid and
principal use of some of the basic tools of analysis. Without drawing the lines
too sharply or giving too clear cut a definition, let us say in a general way that
analytic topology deals with topological situations with the aid of analytical
language and tools, and to some extent conversely, just as analytic geometry
handles geometric situations by analytic methods. I hope this concept will be
made clearer as the treatment progresses and actual examples are given iilus-
trating the type of relationship which has been so vaguely defined.

The major questions to be dealt with are, first, the existence of transforma-
tions of various sorts from a space A to the same or another space B and, second,
the analysis of the action of these transformations on A to produce B. Since
thus we are dealing with the transition from A to itself or to something else
possibly quite different topologically, our subject exhibits kinship with earlier
work on dynamics in the Colloquium Series. This is especially true of the final
chapter on periodicity which connects directly with many of the concepts of this
subject as discussed by G. D. Birkhoff. However, the even closer kinship with
other purely topological treatises, notably that of R. L. Moore in the Colloquium
Series and that of K. Menger on “Kurventheorie’’, will be too obvious to require
comment.

The book divides roughly into two parts, corresponding to the first six and
last six chapters, respectively. In the first part there is developed the necessary
topological machinery and framework for the latter part, which is devoted to
pure analytic topology. Even in the second chapter, however, notably in §§3, 4,
there emerge some of the fruits of the application of analytic or transforma-
tion methods to topological situations. For here a variety of results, some
‘classic and others quite recent, are brought together iz what seems their proper
relationship and derived in a simple and novel way from one central mapping
theorem.

The book is meant to be largely self-contained, at least in so far as topological
developments are concerned. In the later stages some use is made of a few
notions of combinatorial topology and of the theory of groups without any
attempt at adequate introduction. Since these appear largely in end-results and
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x ~ INTRODUCTION

applications, theré seems little need or justification for taking the space to de-

velop them here.
At the beginning we assume once for all a set of axioms sufficient to make all

spaces considered separable and metrizable. Once the metric is introduced,

‘however, attention is no longer focused on the axioms, but rather on the (equiva-~

lent) standpoint that we are operating always in a given separable metric space.
Cross references are given in brackets, with the roman numeral for the chapter
followed by the section and number of the theorem, lemma, or corollary referred

‘to, e.g., [IV, (3.2)] refers to result (3.2) of §3 in Chapter IV, whick would be the

second main result in this section. If only the number in parenthesis is given,
as (3.2) for example, the reference is to the result of that number in the present
chapter, i.e., the one being read at the time. To assist in locating results re-
ferred to, the chapter number and section number appear at the heading of each
double page.

References to the literature in the main are held to & minimum. For con-
venience these sre made at the ends of the chapters in the form of author’s
name followed by numerals in brackets referring to his books or papers by that
number in the bibliography at the close of the book. In some cases one or
more authors’ names have been used in connection with a theorem though by
nc means in all where this might well, or possibly should, be done. A consider-
able amount of the material in the first part is of such a classical nature and so
well known that specific citations to sources in the literature are not made.
Later on more attempt is made to cite the original author and source. In
some cases, algo, closely related material not actually covered is mentioned in
the references.
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CHAPTER 1
INTRODUCTORY TOPOLOGY

1. Operations with sets. We shall have occasion to use sets of points snd
sets or collections of point sets of various sorts. Capital letters 4, B, C, ---
will be used to designate sets and, in general, small letters stand for points. ¢ e A
means “a is an element of the set A or “a is a point of A” if A is a point set.
a non ¢ A means that a is not an element of A.

If A and B are sets,

A = B means that every point in the set A4 is also a point in the set B, and
conversely every point in B is also in 4.

A C B-—read “4 is a subsei of B” or “4 is contained in B”-—means ma.t
every point of A is a point of ' B.

A DO Bmeans B C 4, “A contaings B.” A = B is equivalent to 4 C B
and B C A.

A + B (sum of A and B) means the set of all points belonging either to 4
or to B. In general, if [G] is a collection of sets, Y G is the set of all points z
such that z belongs to at least one element (or set) of the collection [@].

A B (intersection or product) means the set of all points belonging to boih
A and B. For any collection of sets [@], ] G is the set of ali points « such that
z belongs to every set of [G].

If B C A, then A — B is by definition the set of all points which belong to 4
but not to B.

If [G] is a collection of sets, any collection of sets each of which is an element
of the collection [G] is called a subcollection of [G].

Real and complex numbers and their properties will be used freely. A set or
collection whose elements can be put into (1-1) correspondence with a subset
of the set of all positive integers will be called countable, or enumerable. If such
a correspondence is establishéd and the elements arranged in order of ascending
integers, e.g., @, G2, 43, - - , the resulting arranged set is called a sequence.

The empty or vacuous set xs designated by 0. Two sets 4 and B are said
to be disjoint if their intersection is empty, i.e.,, A-B =

2. Topological spaces. A class S of elements or points in which there is
determined a class of subsets called neighborhoods satisfying the foliowing four
conditions sr axioms is called a togological space.

(1) For any z ¢ S, any neighborhood of z is & set of points containing z.
(2) ¥ U is a neighborhood of a point z and y is any point of U, then U is &
neighborhood also of y.
1
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2 ANALYTIC TOPOLOGY [Cuap. 1

(3) ¥ U and V are neighborhoods* and z ¢ U -V, then there exists a neigh-
borhood W of z such that W < U-V.

(4) If z and y are distinct points, there exists a neighborhood of r not con-
taining y.

A point p in such a space is said to be a limil point of a point set M provided
every neighborhood of p contains at least one point of M distinct from p.

If A is a set, the closure of A, written A, is the set consisting of all poinis of 4
and all limit points of 4.

We shall need also the two following additional axioms.

(S) If V is any neighborhood of a point z, there exists a neighborhood U.
of zwith U, C V.

(6) There exists a countable (fundamental) sequence of neighberhoods
Ry, Ry, Rs, --- such that if p is any point and U, is any neighborhood of p,
then for some integer m we have p C R, C U,.

A topological space satisfying (5) is said to be regular and such a space satis-
fying (6) is said to be perfectly separable.

The following propositions are now readily provable in a regular, perfectly
separable topological space S.

(2.1) If p and q are distinct points, there exist neighborhoods U, and U, of p
and g, respectively, with U, U, = 0.

(2.2) If p is a limit point of A + B, then p 18 a limit poini either of A or of B
(possibly of both). '

(2.3) If p is a limit point of a set M, every neighborhood of p contains infinstely
many distinct points of M.

(2.4) Given .any point p which is tn at least one neighborhood, there exists a
monotone decreasing sequence of neighborhoods Q; O G O Qs O - - - closing down
on p, i.e., such that p belongs to every Q. and if U ts any neighborhood of p, then
for some n we have p € Q, < U.

The proofs of (2.1), (2.2), (2.3) are left as exercises. To prove (2.4), let
[R.;] be the collection of all neighborhoods of the fundamental sequence in
Axiom (6) which contain the point p. Set Q, = R,., . By Axiom (3), since
p ¢ Q- R,, , there exists a neighborhood @, such that p C Q, C Q,-R,, . Simi-
larly, there exists a mneighborhoed €, satisfying p € Q@ C Q-R,, C
R.-R.,-R.,. Continuing this process indefinitely we obtain a sequence

Q;_ DQ'_I DQ; D Dp
such that for each 4,

Qi CRn!'Rn’ . Rn.— «

* Note that in view of Axiom 2, it is no longer essential to associate a neighborhood with
any particular cne of its points.



§3] INTRODUCTORY TOPOLOGY 3

Now if U is any neighborhood of p, there exists an integer m such that p C
R, C U. Forsome i, n; = m. Whence, p CQ; CR,, C U, as was to be
shown.

DermNiTion. A sequence of poinls pi, p2, ps, - - (not necessarily distinct)

18 said to converge lo a point p, written ﬁ;‘n: o o;}' provided every neighborhiod
g FPu =

of p contains almest all (i.e., all but a finite number) of the poinis in the sequerice.

(2.5) If p is a limat point of a sel M and p is in some neighborkood, M contains
an infinite sequence of distinct points converging to p.

To prove this, let @ D Q. D @; D - - - be a sequence of neightorhoods closing
down on p {see (2.4)]. Since p is a limit point of M, for each n, @, contains a
point p, of M distinet from p. For any n, there exists a neighborhood U of p
not containing p, and an m such that Q. C U. Hence p, # pmyi (2 = 1,
2, ---). Thus any given peint p, occurs in the sequence [p,] only a finite
number of tiraes. Accordingly there are infinitely many distinct points p, .
Any neighborhood of p contains almost all the sets Q;, @, --- and hence
almost all the points p,. Accordingly, p, — p; and if we eliminate duplicates
we retain an infinite sequence of distinct poiuts p., — ».

3. Open and closed sets. Compact sets. Separability. A set of points G is
said to be open provided that for every point p ¢ G there exists at least one neigh-
borhood V, of p which is contained wholly in G.

A set of points F is said to be closed provided F contains all of its limit points.

The complement of a set G is the aggregate of points not contained in G.

(3.1) The closure of any set ts closed, 1.e.,

=2

(3.2) (a) If a set is open, its complement is closed.
(b) If a set is closed, ils complement is open.

(3.3) (a) The sum of any collection of open sets i3 open.

(b) The product of any collection of closed sets ts closed.

(3.4) (a) The product of any fintte number of open sets i3 open.

(b) The sum of any finite number of closed seis 13 closed.

These propositions are valid in any topological space. The proofs are left
as exercises. In the remaining theorems of this section, we assume & space
satisfying all of the Axioms (1)-(6).

A set K is said to be compact provided every infinite subset of K has at least
one limit point which belongs to K.

(3.5) Every compact set 13 closed.

For suppose K is compact but not closed. Then there exists a limit point p
of K which does not belong to K. By (2.5), K contains an infinite sequence
(p.] of distinct points converging to p. By the compactness of K, [p.] must
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have a limit point ¢ € K. But if U, and U, are disjoint neighborhoods of P
and ¢, respectively, almost all the points p, must be in U, , thus only a finite
pumber can be in U, contrary to (2.3). . A .

36) If Ky DK DK: D --- is a monolone decreasing sequence of ROnYaCUOUS
compact sets, [1v K: is nonvacuous.

For each n, let p, be a point of K,. If some p,, say ps , is chosen infinitely
many times, we have p; e [[¥ K:. If not, the set [p.] is an infinite subset
of K;. Hence if has a limit point, say p. Then for each n, p is a limit point
of the subset. Y = p; of K,.. Since each K., is closed, by (3.5), this gives p ¢ K,
for each n. Whence, p ¢ [I7 K; so that [T K: = 0.

Dermvarion. A set M is said io be separable provided there exists a countable
subset P of M such that P D M, i.e., every point of M is either a poini or a limit .
point of P.

(3.7) Every set is separable.

To prove this, let M be any set and let [R.,] be the collection of all neighbor-
hoods in the fundamental sequence (Axiom (6)) which intersect M. For each 7,
let pie M-R,, and set P = 3 p;. Then if z is any point of M and z non ¢ P,
we must show that z is a limit point of P. To this end, let U be any neighbor-
hood of z. There exists a neighborhood R,, of the fundamentzl sequence such
that z € R.,, C U. Thisgives p C R., € U and pe # z. Thus z is a limit
point of P. '

DerINTTION. A point p i8 said to be a condensation point of a set M provided
every netghborhood of p contains uncountably many points of M.

(3.8) For any set M, all save possibly a countable number of poinis of M are
condensation points of M. "

For let R be the sum of all those sets R; of the fundamental sequence such
that M - R; is countable. Then M :R is countable and every point of M — M -R
is a condensation point of M since any neighborhood R, of the fundamental
sequence which contains a point of M — M-R contains uncountably maay
points of M. ,

4. Covering theorems. A point set M is said to be covered by a collection
of open sets G provided that each point of M lies in at least one set of the col-
lection [G].

An immediate consequence of the perfect separability of our space is the
following proposition, known as the

(4.1) LInpELGF THEOREM. If [G] 18 any collection of open sets covering a point
set M, some cquntable subcollection [G:] of [G] covers M.

For, referring to the fundamental sequence of neighborhoods R;, R, , -- -,
it follows that for each point p of M there exists an integer & so that we have
() p € R: C G ¢[G]; where G is some set of the collection [G] containing p.
Let [R.,] be the collection of those neighborhoods R., of the fundamental se-
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quence having the property that some @ e [G] exists such that R., € @. For
cach ¢, select one such set @and callit G;. Then [G{] is & countable subcollection
of [G] and by virtue of (i) it follows that [R,,] and thus also [G:] covers M.

If restrictions are placed on the set M, we can prove the stronger covering
property embodied in the

(4.2) BoramL THEOREM. If |G is any collection of open sels covering d compact
set M, then sume finite subcollection of [G] covers M.

Proof. By the Lindeléf Theorem, some countable subcoilection [G:] of [G]
covers M. Suppose, contrary to our theorem, that no finite subcollection of
[G{] covers M. Then if for eack n, we set No = M — M-D T G;, it follows that
for each n, N, is nonvacuous, ciosed and compact and contains N,,,. Hence
N = JIT Na » 0. But this is impossible because N C M and N- 3.7 G; = 0
whereas [G;] covers M. Thus the Borel Theorem is demonstrated.

DervrrioN. A set M i3 said to be conditionally compact provided every infinite
aubsetothmahmztpomt(whwhmayurnmymtbelongtoM) Obvtously
any subset of a compact set 8 conditionally compact.

As an application of the Lindelsf Theorem we prove the followmg converse
proposition.

(4.3) If M ss condstionally compact, M is compact.

Suppose; on the contrary, that M contains an infinite subset X wlnch has no
limit point in M. Since M is closed, X can have no limit point. Thus with
the aid of Axiom (5) it follows that for each point p of our space, there exists a
neighborhood V, of p such that ¥, contains at most one point of X. By the
Lindeldf Theorem there exists a countable sequence V,, V3, --- of the neigh-
borhoods V, covering the space. Now since for each n, > V. contains at
most n points of X, there exists & point p, of M not belonging to Y 1 V.
Since the set [p,] is infinite and M is conditionally compact, there exists a limit
point p of this set [z.); but for some k, Pe Vi ; and this is unposmble since V,
can contain at most k of the points p, .

5. Metric spaces. Metrization Theorm By a metric space is meant a class
of elements, or points, in which a distance function or metric is defined, i.e., to
each pair of elements z, y of S a non-negative real number 5(z, y) is associated

satisfying the conditions:
© (1) p(z,y) =0ifand onlyif z = y,

(2) o(z, ¥) = p(y, z) (symmetry),

(3) e(=z, y) + oy, 2) 2 p(z, 2) (triangle mequahty)

The following examples of metric spaces are of fundamental importance.
(i) The real number syslem R in which the distance function is defined as

oz, y) = |z —yl, | z,y ¢R.
(ii) Euclidean n-space R" with the ordinary distance function
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p(.‘t, ZI) = "/ i (1'" - y.')z, T = (Zg, ZLa, "’rrn): y= (yh Y2, "'1”')1

Tiy y“R-

(iti) Hilbert space H consisting of all sequences of real numbers z =
(215 72, - -+ ) with D_t zi convergent as points and with the metric

oay) = 4/ 2 -

(iv) The Hilbert fundamental parallelotope Q. consisting of all sequences z =
(21, 2, - -+ ) of real numbers satisfying 0 £ z; < 1/¢ as points and the aame
metric as in (iif). Clearly @, C H.

(v) The space Q. consisting of all sequences of real numbers z =
(1, 22, -+ ) with 0 < 7; < 1 as points and with the metrie

plz, y) = ; 27z — el
(vi) The topological (or cartestan) product X X Y of two metric spaces X
and Y, consisting of all ordered pairs (z, y) where z ¢ X, y ¢ Y and where the
distance p(p, , p2) between two points py = (21, y1) and p; = (22, ys) is defined by

oo, p) = Volzi, 2)' + >y, v’
or by

o(P1, p2) = max [p(z1, 22), p(31, ¥2)].

It results that either of these is a distance function and, no matter which is
used, it follows that a sequence py, Py, 23, -+ in X X Y will converge-to a
point pin X X Y (i.e., lim p(p:, p) = 0) if and only if both lim p(z;, 2) = 0
and lim p(y:, y) = 0, where p; = (z:, ys) and p = (z, ¥)..

A topological space is said to be metrizable provided it is possible to define a
distance function satisfying conditions (1), (2), and (3) and such that a point p
will be a limit point of a set M if and only if there exist points of M distinet
from p as close to p as we please in the sense of this distance. Our principal
object in this section will be to prove that any regular, perfectly separable topo-
logical spuce 18 metrizable.

To this end we first establish two lemmas.

(5.1) (Tychonoff) Any regular perfectly separable topological space is normal,
i.e., any two disjoint closed sets are contained in disjoint open sets.

Proof. Let A and B be any two disjoint closed sets lying in our space. By
the regularity property it follows that for each z ¢ A there exists a neighborhood
U of z such that U-B = 0. Applying the Lindelsf Theorem to the collection
{U] we obtain a countable sequence of neighborhoods U,, U,, - -- covering A
and such that U;B = 0 (1 = 1, 2, --- ). Similarly there exists a countable
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collection of neighborhoeds Vi, Vi, --- covering B such that P-4 = 0
(i=12- ). Nowlet ~

U: = U;, ‘ V: = V1 == V;‘Ul,
Us = Uy~ Uy-Py, Vi = Va— Vo(U: + Uy,
- e .

.................................................

Then for each n, U% and V7 are open and U%-A = U.-A and V>-B = V,-B.
Thus if U* = 3 7 Us and V* = Y1 Vi, U* and V* are open sets containing
A and B, respectively. Also U*-V* = 0. For if not we would have an m
and an n such that Us-Vs 5 0. But if m > =, the definition of UL =
Un — Un- 20"V gives Un-Vr = O since Vs C V,; and if m < n, the
definition of Vs = V. — V.-X. U gives U%-Vs = 0 since Un C Un.

(5.2) If A and B are disjoint closed subsets of a perfecily separable, regular,
topological space S, then there exists a continuous real function f(z) defined for all
z ¢ S and such that: » :

HO0sflz)s1 onS.

(i) f(z) =0 on A.

(iii) f(zr) =1 on B.

Proof. For each fraction of the formr = m/2" (m =0, 1,2, ---, 2") we
shall define an dpen set G(r) such that (a) A € G(0),G(1) =S — B, (b)ri <rs
always implies G(r;) C G(r;). By (5.1) there exists an open set G(0) such that
A CG(0) CG(0) €G(1) = S — B. Thus we have the sets G(r) defined and
conditions (a) and (b) satisfied for n = 0. Let us suppose this has been done
for n = k — 1 and proceed to do it for n = k. Thus we have to define G(i/2")
for odd integers i < 2", since for i even, /2" reduces to the form (i/2)/2*"".
Now by (b) we have @[( — 1)/2%] < Gl(¢ + 1)/2']. Thus applying (5.1)
with A = @[ — 1)/2%), B = S — G[(z + 1)/2"], we obtain an open set G(i/2")
such that @[ — 1)/28 € G(/2Y) C GE/2% C GlG + 1)/2']. Thus-we
obtain the sets G(r) by complete induction for all numbers r of the form m/2".

Now define f(z) = 0, for = ¢ G(0), and f(z) = the least upper bound of the
numbers r such that z ¢[S — G(r)], for  non ¢ G(0). Then f(z) = 0 on A,
flz) =1onB,0 = f(z) S 1on 8. It remains to show that f is continuous.
Let peS,and ¢ > 0. If 0 < f(p) < 1, let r; and ry be fractions of the form
m/2" such that f(p) — /2 < n, < f(p) < r2 < f(p) + ¢/2. Thus in the open
set G(r:) — G(r,) we have r; < f(z) S r, which gives | f(z) — f(p) | < e If
f(p) = 0 or 1, a similar argument proves the continuity of f(z) using only r.
when f(p) = 0-and only r, when f(p) = 1.

(5.3) METRIZATION THEOREM. Any perfectly separable, regular, topological
space S is metrizable.
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‘Proof. Let Ry, Ry, - -+ be a fundamental sequence:of neighborhoods in S.
Order all pairs R:, R; such that B; C R; into a sequence ¥y, Py, «-~. For
each such pair P, = R;, R;, we take R; = 4 and S — R; = B and, applying
(5.2), obtain a continucus function f,(z) defined on S and satisfying @), @),
and (iii) of (5.2). ;

For each pair of points z, y « S we now define

o) = 2 T — 1),

and proceed to show that this function p(z, y) is a distance function effecting the
desired metrization.

We first show that conditions (1), (2), and (3) on a dietance functior are
satisfied by p. Now if z = y, we have fo(x) = fu(y) for all n, and hence
e(z, ¥) = 0. On the other hand if z > y, then for some n and P, = R;, R;,
we have z¢R;, ye(S — R;). Whence f.(z) = 0, fa(y) = 1 and thus
o(z, y) =2 27". This proves (1). Now (2) is obvious and (3) results at once
from the following

e, 1) + s, ) = 2 2NSE) ~ 1) | 4 17a0) = Sl ]

2 2T U@ ~ 16)| = e, 9.

To complete the proof we have to show that p ¢ S is & limit point of a poiit
set M if and only if there are points of A distinet from p but arbitrarily near p.
Let p be a limit- point of M and let ¢ > 0 be arbitrary. Taking N so large
" that 277 < ¢/2, we can find a neighborhood U of p throughout which the
oscillation of 31 27" | fa(z) — fa(y) | is less than ¢/2. ThenifqeU-M, we have
p(p, §) < ¢/2 + D w412 < & On the other hand suppose that a point p is
not & limit point of a set M. Then there exists a pair P, = R;, R, such that
peR, M — p-M C S — R;. Thisgives fu(p) = 0,fu(z) = 270 M — p-M,
Whence s(p, ) = 27" for all zeM — p-M. Thus there are no points of M
different from p at a distance less than 27" from p, and the proof is complete,

Now if in any metric space, S we define neighborhoods to be sets of the form
V.(z), where z i8 a point of S, r i8 & positive number and V,(z) is the set of all
points y of S with p(z, y) < r clesrly Axioms (1)-(5) of §2 are satisfied. If
in addition we suppose S separable and take a countable set P = 3 p; such
that P = 8, it is readily seen that the countable set of neighborhoods [V.(pJ)},
rational, satisfies Axiom (6). Accordingly:

(56.4) Any separable metric space 18 a regular perfectly separable topological
space, and conversely any regular perfectly separable topological space is melrizable.

Henceforth we shall assume all our spaces separable and metric. Further,
the terms ‘“‘neighborhood” and “open set” will be used synonomously since
they give equivalent topologies to  our spaces. *

Note. In the proof of the Metrization Theorem we have really assigned to
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each point z of S the point f(2) = [fi(z), fa(x), -+ ] of the space Q,, (see example
(v), p. 8) in such a:way that this correspondence is (1-1) (i.e., for each z,
f(z) is uniquely determined and f(z) = f(y) implies z = y). Furthermore we
also showed that this correspondence and its “inverse’” are continuous, i.e.,
z; — z implies f(z;) — f(z), and conversely. Such a correspondence or trans-
formation is smid to be topelogical or to be a homeomorphism (see Chapter II
below). Thus we have shown that any space S satisfying Axzioms (1)—(6) s
homeomorphic with a subset of Q. . .

Also it is seen at once that if to each point z = (z;, 2z, - -+ ). of Q. we make
correspond the point ¥ = g(z) = (21, 22/2, /3, - +-) of Q,, each point y =
(%1, ¥, ---) of Q, will correspond uniquely to the point z = (31, 212, 3%,
«--) of Q. and this correspondence is also topological. Hence @, and Q. are
homeomorphic. Thus any space S as above 18 homeomorphic with a subset of
Q. (and hence of H), because clearly two sets-each homeomorphic with a given
third set are homeomorphic with each other.

Finally, the spaces Q. and Q. are both compact. For in either space clearly
“p. — p” 18 equivalent t¢ “for every 7, the ith coordinates of p. converge to
the ith coordinate of p.”” Thus if [p.] is an infinite sequence of distinet points
of Q. (or Q.), we choose an infinite subsequence (ph) whose first coordinates
converge to a number p'. Then from (p.) choose an infinite sequence (p3)
whose second cecrdinates converge to p°, and so on. Thus clearly the sequence
(p?) will converge to the point (', p°, - --).

6. Diameters and distances. As an inimediate consequence of the definition’
we have

(6.1) Any distance function p(z, y) 18 continuous.

That is, for any two pcints a and b and any e > 0 there exist neighborhoods
U, and U, of a and'd, respectively, such that for z e U,, y ¢ Us

() | p(a, b) — o(z, v <e. v
To prove this we have only to take U, and U, so that forz e U,y ¢ Us

(ii) o(a, z) < ¢/2, o(b, y) < ¢/2.
This gives by the triangle inequality

oz, 4) S p(z, @) +0(a, b) + (b, y) < (e, D)+ ¢
pla, b) S o(a, 2) + p(z, %) + (3, D) <plz,9) + ¢
* b3, b) — ¢ < plz, 1) < p(a B) + e
which is equivalent to »(i).

DeFiNerions. . By the digmeter 8(N)- of any set N is meant the leasi upper
bound, finite or infinite, of the aggregate [p(z, y)] where z, y ¢ N. By the distance
o(X, Y) between the two seis X and Y 18 meant the greatest lower bound of ihe aggre-
gate [p(z, y)] for zeX, yeY. '

Obviously 5(N) = 3(N) and p(X, ¥) = o(X, ?) for any sets N, X, Y.
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(6.2) If N is compact, there exist points z, y ¢ N such thal p(z, y) = 3(N) < =.

For let (z:, y1), (za, 31), - - - be a sequence of pairs of points of N such that
lim p(z., ya) = 8(N), finite or infinite. Since N is compact, the sequence
Ti, T2, T3, -+ contains a subsequence which converges, in the sense of §2,
to a point z. We may suppose the notation adjusted so that z, — z. Similarly
the sequence [y.], after the adjustment for (z.] has been made, contains a sub-
sequence converging to a point y. Again we can adjust the notation so that
Tn— 7T, Ya— Y. Since lim p(z, , y») = 8(N), it results from (6.1) that p(z, y) =
dN) < . )

(6.3) If X and Y are disjoint compact sets, there exist points x e X and ye Y
such that

p(z,y) = p(X,Y) > 0.

To prove this we choose a sequence of pairs of points [(z., ¥s)] 88 in (6.2)
sothat T, ¢ X, Y €Y, 2. > 2 e X, ya > y ¢ Y, and lim p(z., ya) = p(X, Y).
The continuity of p gives p(X, Y) = p(z, y) and since z = y, o(z, ¥) > 0.

7. Superior and inferior limits. Convergence. Let G be any infinite collec-
tion of point sets, not necessarily different. The set of all points z of our space
8 such that every neighborhood of z contains points of infinitely many sets of
G is called the supertor lim:it or limil superior of G and is written lim sup G.
The set of all points y such that every neighborhood of y contains points of all
but a finite number of the sets of G is called the inferior limit or lymit inferior
of G and is written lim inf G. If for a given system @, lim sup G = lim inf G,
then the system (collection, or sequence) G is said to be convergent and we write
lim G = lim sup @ = lim inf G. Under these conditions we say that G converges
to the limit lim G.

For example, let G be the collection of all positive integers. Then lim sup
G = liminf @ = im G = 0. Thus G is convergent and has a vacuous limit.
Again, let G be the system of sets [La]5-1, where L, is the straight line interval
joining the points [(—1)"(1 — (1/n)), 0] and [(—1)"(1 — (1/n)), 1]. Then
lim sup G is the sum of the interval from (—1, 0) to (—1, 1) and the one from
(1, 0) to (1, 1), lim inf G = 0, and thus lim G does not exist.

From the definitions, we have at once for any system G

@) lim inf G C lim sup G.

Furthermore, lim inf G' and Im sup G are always closed point sets. For if
z i8 a limit point of lim inf G, then any neighborhood V of z contains a point
y of lim inf G; and since V is a neighborhood also of y, then V contains points
of all save a finite number of the sets of G' and thus x belongs to lim inf @. Simi-
larly if z is a limit point of lim sup @, any neighborhood V of z contains a point
z of lim sup G and thus V, a neighborhood of z, contains points of infinitely many
of the sets of G. Therefore = belongs to lim sup G.



