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PREFACE

The last few years have seen a tremendous increase in the data published on
excess thermodynamic properties, since the concept was first defined by Scatchard
in 1931. Properties of mixing and excess properties are proving to be increasingly
useful in the development of solution theories, data prediction, and design of
physical separation equipment. This is a very challenging area in Thermodynamics
and more and more people are being attracted to it. Modern chemical industry,
requiring more precise and sophisticated methods of calculation will certainly
benefit from these developments.

This book is intended to provide a quick and organized literature reference
source for the data published on mixing properties and excess properties between
1900 and early 1977. The information reported here has been gathered mainly from
Chemical Abstracts and allied publications in Chemistry, Chemical Engineering and
Metallurgical Engineering. Over 10,000 references have been scanned and of these,
about 6,000 found to contain pertinent material. The material has been organized
in an easy to reach manner, following the general framework given by Wichterle,
Linek and Hala in their book on Vapor-Liquid Equilibrium. We expect to continue
to up-date this reference with material published afterwards. The systems covered
include non-electrolyte solutions, electrolyte solutions and metallurgical systems.
We thus expect that this literature source will be useful to people working in
chemistry, chemical engineering, materials and metallurgical engineering, and
process design.

We would Tike to express our deepest thanks to the Ben-Gurion University of
the Negev for providing encouragement and generous assistance, to the Computation
Center for their technical help, and, in particular, to our assistants Yehudit
Reizner and Moshe Golden for long devoted hours of computer operations for handling
the data.

JAIME WISNIAK
ABRAHAM TAMIR
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INTRODUCTION

In dealing with multicomponent solutions one is always faced with two questions:
(a) How much does the molar property of a real solution deviate from the
molar property obtained by a linear combination of the molar property of the pure
components?
(b) How much does the behavior of a real mixture deviate from that of an ideal
mixture of the same composition?

If it is found that the deviations are negligible, then the behavior of the
mixture can be easily determined. If, however, as in most practical situations,
the deviations are significant and their magnitude is not even predictable, one
must resort to experimental measurements to determine the real behavior of the
solution.

In thermodynamics it is common practice to describe the deviation from ideal
solution behavior by means of the so-called properties of mixing and excess proper-
ties. The rapid development of research in this field has been particularly moti-
vated by the importance of these variables in developing new classical and statis-
tical theories of solutions, as well as their use in the design of separation equip-
ment.

FUNDAMENTAL RELATIONSHIPS AND DEFINITIONS

In dealing with the extensive properties of solutions, it is convenient to con-
sider separately the contribution attributable to each component present. 1In ideal
systems these contributions are the same as the properties of the pure components
existing separately at the temperature and pressure of the solution. However, in
many systems, this additivity of properties does not exist and the overall property
is quite different from the sum of the pure-component properties.

Assume that M is the value of a property on a molar basis, then

nM = M(P, T, Ny Nosyunvennnnnnnn. n.) (1)

where P is the pressure, T the temperature, n; is the number of moles of component
i in a system containing k components and n is the total number of moles
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Differentiating we get

k
dnM = (%"P—M) dp + (E’a"—TM) ar+ 3 (2 dn. (2)
T,n P,n i=1 i PsTs nj#i

The first two terms represent the changes associated with the effect of pressure
and temperature in a system of constant composition, while the last terms represent
the effect of composition changes at constant pressure and temperature. The deri-

vative

W= (2 (3)
T PyTs Nisgs
J#i

is called the partial property Mi of component i.
Equation 2 can be easily integrated at constant pressure and temperature using

Euler's theorem for homogeneous functions. Thus,

k
nM = 121 M, n, (4)
or

k —
M = z M. X. (5)

on a one mole basis. Equation 3 shows that ﬁ} is an intensive property since nM
is an extensive property of the first degree in the composition.
Differentiating Equation 4 and comparing it with Equation 2 gives

which is a particular form of the general Gibbs-Duhem equation.
The partial property will seldom be equal to the molar property Mi of the pure
component at the same pressure and temperature. Although we cannot write that

k
M= Z Xi M. (7)

we can correct for non-linearity by adding a term AM called the property of mixing.
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k
M=M= 7 X M (9)

we can see that AM is the actual property change that takes place when the pure
components are mixed at constant P and T to form one mole of solution. Application
of the definition of a partial property leads to

k
M=) X, aM. (10)
Lo i
i=1
where
AMi = Mi - Mi (171)
k
From the fact that ) Xi = 1, we obtain
i=1
k-1
dX, :-_Z dX; (12)
i=1
and
k —_—
dM = 12] M, dX (13)

Eliminating Xk we get

k-1
M = iZ] (Mi - Mk) dX; (14)
Since X1,Xo,000n... > Xk-1 are independent variables
oM = 7 =
Gxe,r =M - M (15)



- k-1 il
Me=M-L X G et (16)
i=1 i
and
k-1
= aM 3M
Mo=M+ (2 -7 x, (2 (17)
i RN R AR S I

Equation 17 allows the calculation of the partial property for every component
except the kth component.
An ideal solution may be defined as one that follows the Lewis-Randall rule

F.o= X (18)

where %i is the fugacity of component i in a solution of composition Xi at P and
T, and fi is the fugacity of pure component i at the same P and T. The strict
application of Equation 18 (and Equation 9) may require the definition of one or
more components in a hypothetical state of aggregation.

The definitions of fugacities fi and %i are

dG; = RT dIn f, (19)
dG; = RT dIn %1. (20)
so that
6.5 =5 = RT N x, (21)
. k . k
id — id _
AG T = 121 X; BG; ° = RT 121 X; In X, (22)

Differentiation of Equation 21 with respect to P at constant T and composition
gives

From Maxwell's relations we obtain

v.1d 7. - gvd
1 1 1

d-p (24)
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As a result of Equation 10 it follows that Avid = 0, that is

k
V=V X, V. (25)

By proper use of function definition and Maxwell's relations, it can be shown
that with the exception of nA, nG and nS, all the extensive properties of mixing

of an ideal solution are nil.
Differentiating Equation 21 with respect to T at constant P and composition

yields
s R, (26)
so that
id 3
AS'TT = =R ) X In X, (27)
2 1 i

Equations 22 and 27 show that the isothermal mixing of k components to form an
ideal solution is always accompanied by a negative value of AG and a positive value
of AS. )

Another important auxiliary concept is that of the apparent molar property.
Although it does not have a direct thermodynamic significance, it is usually cap-

able of direct experimental determination in cases where the partial molar proper-
ties are not. By definition, the apparent molar property ¢M of component 2 is

M -y,

Equation 28 shows that ¢M is the apparent contribution of one mole of component
2 to property M of the mixture.

The apparent molar property can be related to the partial molar property as
follows. From Equation 28 we obtain
nM - nlMl = nZ«bM

Differentiation with respect to n,, assuming P,T and n; to be constant, yields

= InM ~ l)q)M
M= G, tany = M2 Gadpton, t om (29)
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Since the molarity m is equivalent to n,, when n; is constant, Equation 29 may

be written
_ do
M, = mgt + oy (30)
_ d(moy)
My = —g (31)
Integration between the limits (0,0) and (m,m¢M) gives
m
by =& | Mo (32)

0

Equation 8 indicates that the concept of property of mixing is associated with
a particular combination of the properties of the pure components. It is of more
interest to inquire about the direct comparison of the real property with the ideal
property. The excess property [1] is then defined as the difference between the
actual property and the property which one would obtain for an ideal solution.
According to Missen [2] this definition is sufficiently flexible with respect to
the choice of reference state, which affects the ideal solution model, as well as
to the choice of pressure or volume. It may then be stated in terms of the same
temperature and composition while leaving open the other condition. Thus for mix-
ture property M, the possible excess functions are:

ME _T,J(s),X:I - M LT,J(S),x] _ pid(s) [T,J(S),X_ (33)

ME _T,J(S),X:] - W, T,J(S),X] - pid(s) [T,J(S),XJ (34)

aME T,J(s),x} = M T,J(S),x] _auid(s) [T,J(S),X_ (35)
L L ad

mf [T,J(S),x] = W, [T,J(s),x:] . m}fd(s) [T,J(s),XJ (36)

where J(S) is a property (normally pressure or volume) which must be specified,
and superscript iﬁiE) refers to an ideal solution model which must also be speci-
fied.

It should be clear that Equation 33 can be applied to any thermodynamic property
and is not restricted to extensive properties. For example, MclLaughlin [3] has
applied it to transport properties like viscosity and thermal conductivity; Masood,
et al. [4] to the isentropic compressibility; and Wisniak and Tamir [5] to the
boiling temperature of a multicomponent mixture.
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Missen [2] has discussed the different possible definitions for the ideal state,
according to the reference state in which real behavior is considered to approach
ideal behavior. The numerical value of the excess property will depend on the
choice of ideal solution model and the system description will be asymmetric if
different reference states are used for different components in the same solution.

It should be noted that for extensive properties, the definitions given in Equa-
tions 33-36 are not independent and that

ME = amME (37)
Mf = ﬁMi (38)
e kKo koo
M- = aM- = ) X, aM; = X, M (39)
4 1 1 Che 1 1
i=1 i=1
id ,id d

It has been indicated previously that only AG ™, AA ™ and ASi are different

from zero so that for all other extensive properties, the excess property is identi-

cal with the property of mixing. No new property is defined for those variables.

In what follows, the exponent E will be retained for purposes of consistency only.
According to the definition of excess property

—E _ = _ +id
AGi = AGi Gi (40)

and the definition of the chemical potential M of component i in solution

wp = G = g0 +RT In 4, (41)

Where “10 is the chemical potential of component i pure at P,T and éi is its acti-
vity in the solution, we get

A6 = RT In &, - RT In X, (42)
Ef = RT 1n v, (43)

¥; is the activity coefficient of component i, defined as 51/Xi' For the overall

change, AGE, we have

AG- = RT § X: In vy, (44)

Equations 43 and 44 point out that a knowledge of AGE allows calculation of
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the activity coefficients and vice versa.
In a similar way, it can be shown that

AST = aS+R J X In v, (45)

It is instructive, at the present stage, to summarize the significance of excess
thermodynamic properties:

(a) Excess properties provide key values for calculation of multicomponent
mixture properties from pure component data;

(b) Excess properties are often used to define the various kinds of solutions;
Excess properties are used in testing solution theories;

(d) Excess properties can provide data for evaluation of parameters character-
izing interactions between unlike species in a mixture;

(e) The excess of the Gibbs function of mixing, AGE, is one of the most use-
ful thermodynamic concepts for expressing non-ideality of a liquid mix-
ture;

(f) AGE is the most useful quantity for determining phase stability and phase
separation;

(g) The excess enthalpy of mixing, AHE = AH, is a very useful quantity in
predicting isothermal vapor-liquid equilibrium and testing the thermo-
dynamic consistency of non-isothermal vapor-liquid equilibrium data.

REPRESENTATION OF EXCESS PROPERTIES

The construction of theoretical or empirical expressions for the excess proper-
ties of mixtures has been, and is, the subject of much research. As yet, none of
the expressions postulated are so generally superior to others that it can be cited
as being the best. Proper selection of an appropriate form for a given application
depends on such considerations as (1) the need for simplicity of equations, (2) the
availability of data with which to evaluate the parameters, (3) the need to make
predictions without excessive data (multicomponent systems from binary systems),
(4) the desire for accurate correlations, (5) the desire to assign physical meaning
to the parameters, (6) unusual non-idealities like partial miscibility, or (7) the
nature of the system (aqueous, non-aqueous, metallic).

In the following pages, the most important theories and equations are described.
For simplicity, they are grouped in three arbitrary categories (1) Non-electrolyte
systems, (2) Alloys and metallic systems, and (3) Electrolyte systems, although
some of the equations may be used in more than one category.
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1. Non-Electrolyte Systems

This category includes mainly non-aqueous solutions and gas mixtures.

1.1 Regular Solution Theory

The regular solution theory given by Scatchard [6] and Hildebrand [7,8] describes
a substitutional solution in which every atom is surrounded by z nearest neighbors,
z having the same value whatever central atom is considered, and for which the same
composition is similar to the rest of the solution. Since no ordering is considered
in the solution, the excess entropy and the excess volume are nil. Develooment
of the theory starts with the definition of the cohesive energy density

& = f%i (46)
where AU is the energy required for the isothermal vaporization of a saturated
liquid of specific volume V to the state of ideal gas.

For a binary mixture, Equation 46 is written

c11ViXy + 2c10ViVoXiXy + conVokXs (47)

il = NV, F X, V5

The constant Cis refers to interactions between Tike molecules, while Cij refers
to interactions between unlike molecules. Parameter Cij is assumed to be the geo-

metric mean of Ci and c. .

1 JJ
2. =
€5 = C5iCs3 (48)
Define the volume fraction of component i as
XiV1
q»i = — (49)
Z X;Vs

where Vs is the volume of pure i liquid. For a binary mixture, Equation 47 then
becomes after rearrangement

=AU = (XqVy + XoVp)(cip9] + 2ci06100 + Condl) (50)
Since the excess entropy and excess volume are assumed to be nil, we have

AG™ = AA" = AUS = aH" (51)
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so that
a6F = d192(C11 + Cop - 2¢15) (X Vy + XpV2) (52)

Defining the solubility parameter §; as

- A!_%
5 = i = (W), (83)
gives
aGE = $102(81 = 82)% (XiVp + XoVy) (54)

Equation 54 may be extended to multicomponent mixtures as follows:

£ m-1 m
AGT = 2 z ATJ' X1_ XJ (55)
i=1 j=1'+'|
with
)\ij =z No(‘/zeﬁ + ‘/aejj) (56)

where e represents the energy of formation of the different pairs involved and

Aij is the interaction parameter in the binary solution ij.
Weimer and Prausnitz [9] have extended Equation 54 to include the effect of a

polar solvent by expressing the energy of vaporization as a function of polar and
non-polar solubility parameters in the following way:

(non-polar) , aU2 (polar) _ 2 2 (57)

AUL
e et +
\/1 v, B1 T1

<|l>
Ll (==

where g; is the non-polar and t; the polar solubility parameter. Equation 54 be-

comes
E _ 2 2
AGT = 6197 {}31 - By)" + 1y - 2w1é] (X1V1 + X,V5) (58)

where the energy term y;, was introduced to account for the induction effect between

a polar and non-polar molecule.
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1.2 Barker-Guggenheim Lattice Theory [10,11,12]

The category of lattice theories covers a number of particular theories that
are variations of the same basic model. The cell theory, hole theofy, tunnel theory,
Monte Carlo method, and Molecular Dynamics method, all start with a lattice model
of the liquid state and the various features of each method are the result of dif-
ferent levels of occupation of the lattice, disorder, available free volume, and
averaging procedures. The reader is referred to reference [11] for a detailed math-
ematical description of the different models.

In Barker's theory, a quasi-lattice picture of the 1iquid is used, each molecule
occupying a certain number of sites on a well-defined lattice. The values of the
excess properties of mixing are derived on the basis of energy interactions of sur-
face atoms of each molecule. Only pair interactions are taken into account, no
attraction between adjacent pairs is assumed. To specify the model, it is then
required to calculate the type and surface of interacting contact points, and the
associated energy. The development of the formalism begins with the assumption
that the Hamiltonian for the wave equation separates into a kinetic energy term and
another term dealing with internal degrees of freedom of the molecules. The kinetic
term of the Hamiltonian further separates into a momentum term and a configurational
term. The separation of the Hamiltonian can also be expressed in terms of a factored
partition function. The configurational part of the partition function is a 3N-fold
integral and is very difficult to evaluate. The lattice approach replaces this
integral with a discrete sum. If we assume that the uth segment of an A molecule
occupies a particular site and the uth segment of a B molecule occupies a neighbor
site, the excess properties become:

E E
26" = T Xpia (59)
A
uh = RT [ZQ n X/XA XT) + ra(z/2 - 1) In (% erB/rA)} (60)
E_ ATAT, AA.  AA B AB. AB
aHE = -2RT [%\ UZV - KX HGT) i In ol +A;Bu§v xuxV I } (61)

In these equations XA represents the mole fraction of component A and Qﬁ is
the number of u type contacts of an A molecule. Terms like XA correspond to the
frequency factor for interaction of an A molecule through itsuu segments and can
be calculated from

WAy A8

o "u\) v

- (@) x, (62)

with Xﬁ] being the value of Xﬁ for XA = 1.



