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Preface

The principal aim of this volume is.to place at the disposal of the
engineer or physicist the basis of an intelligent working knowledge
of a number of facts and techniques relevant to four fields of mathe-
matics which usually are not treated in courses of the “Advanced
Calculus” type, but which are useful in varied fields of application.
The text includes the result of a series of revisions of material
originally prepared in mimeographed form for use at the Massa-
chusetts Institute of Technology.

~Account is taken of the fact that most students in the fields of
application have neither the time nor the inclination for the study
of elaborate treatments of each of these topics from the classical
point of view. At the same time it is realized that efficient use of
facts or techniques depends strongly upon a substantial under-
standing of the basic underlying principles. For this reason, care
has been taken throughout the text either to provide rigorous proofs,
when it is believed that those proofs can be readily comprehended
by a wide class of readers, or to state the desired results as precisely
as possible and indicate why those results might have been formally
anticipated. .

In each chapter, the treatment consists in showing how typical
problems may arise, in establishing -those parts of the relevant
theory which are of principal practical significance, and in develop-
ing techniques for analytical and numerical analysis and problem
solving,.

Whereas experience gained from a course on the Advanced
Calculus level is presumed, the treatments are almost completely
self-contained, so that the nature of this preliminary course is not
of great importance.

v



vi PREFACE

In order to increase the usefulness of the volume as a basic or
supplementary text, and as a reference volume, an attempt has been
made to organize the material so that there is very little essential
interdependence among the chapters, and so that considerable
flexibility exists with regard to the omission of topics within chap-
ters. In addition, a large amount of supplementary material is
included in annotated problems which complement numerous
exercises, of varying difficulty, which are arranged in correspondence
with successive sections of the text at the ends of the chapters.
Answers to all problems either are incorporated into their state-
ment or are listed at the end of the book.

The first chapter deals principally with linear algebraic equations,
quadratic and Hermitian forms, and operations with vectors and
matrices, with special emphasis on the concept of characteristic
values. A brief summary of corresponding results in Sfunction space
is included for comparison, and for convenient reference. Whereas
a considerable amount of material is presented, particular care was
_taken here to order and even to overlap the demonstrations in such
a way that maximum flexibility in selection of topics is present.

The first portion of the second chapter deals carefully with the
variational notation and derives the Euler equations relevant to a
large class of problems in the calculus of variations. More than
usual ‘emphasis is placed on the significance of natural boundary
conditions. Generalized coordinates, Hamilton’s principle, and
Lagrange’s equations are treated and illustrated within the frame-
work of this theory. The chapter concludes with a discussion of
the formulation of minimal principles of more general type, and with
the application of direct and semidirect methods of the calculus of
variations to the exact and approximate solution of practical
problems. B
~ The third chapter combines the presentation of available
methods for solving the simpler types of difference equations with a
description of the application of finite-difference methods to the
approximate solution of problems governed by partial differential
equations, and includes consideration of the troublesome problems
of convergence and stability. Much of this material, the import-
ance of which has increased greatly with modern developments in
the field of numerical analysis, has not appeared previously in
integrated form.
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The concluding chapter deals with the formulation and theory
of linear infegral equations, and with exact and approximate meth-
ods for obtaining their solutions, particular emphasis being placed
on the several equivalent interpretations of the relevant Green’s
function. Considerable supplementary material is provided in
annotated problems

Many compromises between mathematical elegance and prac-
tical significance were found to be necessary. It is hoped that the
present volume will serve to ease the way of the engineer or physicist
into the more advanced areas of applicable mathematics, for which
his need is steadily increasing, without obscuring from him the
existence of certain difficulties often implied by the phrase ‘“It can
be shown,” and without failing to warn him of certain dangers
involved in formal application of techniques beyond the limits
inside which their validity has been well established.

The author is indebted to colleagues and students in various
fields for help in selecting and revising the content and presentation,
and particularly to Professor A. A. Bennett for many valuable

criticisms and suggestions.
F. B. HILDEBRAND
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CHAPTER ONE
Matrices, Determinants, and Linear Equations

1.1. Introduction. In many fields of analysis we find it neces-
sary to deal with an ordered set of elements, which may be numbers
or functions. In particular, we may deal with an ordinary sequence
of the form ay, @s, . . . , Gn, OF With & two-dimensional array such
as the rectangular arrangement

ay, Q12 °° ', O

Ami, Gmz, * ° ° 5 Omny

consisting of m rows and n columns.

When suitable laws of equality, addition and subtraction, and
multiplication are associated with sets of such rectangular arrays,
the arrays are called matrices, and are then designated by a special
symbolism. The laws of combination are specified in such a way
that the matrices so defined are of frequent usefulness in both
‘practical and theoretical considerations.

Since matrices are perhaps most intimately associated with sets
of linear algebraic equations, it is desirable to investigate the general
nature of the solutions of such sets of equations by elementary
‘methods, and hence to provide a basis for certain definitions and
investigations which follow.

1.2. Linear equations. The Gauss-Jordan reduction.
We deal first with the problem of attempting to obtain solutions of
a set of m linear equations in n unknown variables 1, T3, . . . , T,
of the form

1



2 MATRICES, DETERMINANTS, LINEAR EQUATIONS [§1.2

anzi + 1%z + ¢ ¢ + Q1nTn = Cl,b

@nuZ1 + Qa2 + * ° ° + G2Ze = Cay

’ ()

Gm1T1 + Amal2 + ¢+ CGun®n = Cm

by direct calculation.

Under the assumption that (1) does indeed possess a solution,
the Gauss-Jordan reduction proceeds as follows:

First Step. Suppose that ay # 0. (Otherwise, renumber the
equations or variables so that this is so.) Divide both sides of the
first equation by a1, so that the resultant equivalent equation is of
the form

D A T 2)

Multiply both sides of (2) successively by az, @s, . - . , Gmy, and
subtract the respective resultant equations from the second, third,
. . . , mth equations of (1), to reduce (1) to the form

’/ 14 ’
Z1 4 %z + 0 0 AT =0
! ’ 7
QT2 + ° 0 0 2T = 0y

®3)

L]
’ ’ 4
Q22 + S + CppnTn = Cm

Second Step. Suppose that a3, = 0. (Otherwise, renumber the
equations or variables so that this is g0.) Divide both sides of the
second equation in (3) by @3, so that this equation takes the form

e+ afys + - - 0+ 0T = 6, (4)

and use this equation, as in the first step, to eliminate the coefficient
of z3 in all other equations in (3), so that the set of equations becomes

" (4 "
Zy Faysxs + 00 0T =0,
’ " 4
Za + apsxs + ¢ 0 ¢+ ATa = Gy,
" " 14

Ayss + ° 0 T GgTa = C3, ° )

/4 n
O 373 + vt + Apnln = Cp
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Remaining Steps. Continue the above process r times until it
terminates, that is, until » = m or until all coefficients of the z’s
are zero in all equations following the rth equation. We shall speak
of these m — r equations as the residual equations.

There then exist two alternatives. First, it may happen that
one or more of the residual equations has a nonzero right-hand
member, and hence is of the form 0 = ¢, (where in fact ¢ > 0).
In this case, the assumption that a solution of (1) exists leads to a

- contradiction, and hence no solution extsts. The set (1) is then said
to be inconstistent or incompatible.

Otherwise, no contradiction exists, and the set (1) of m equations
is reduced to an equivalent set of r equations which, after a trans-
position, can be written in the form

Ty =71+ anuZryr + * 0+ s,

T2 = Y2+ aaZr1 + °  ° + Q20T

’ (6)

z, = v + 01 Trt1 L Oy, n—rLn

where the v’s and o’s are definite constants related to the coefficients
in (1). Hence, in this case the most general solution of (1) expresses
each of the r variables z;, z3, . . . , Z, as a definite constant plus a
definite linear combination of the remaining n — r variables, each
of which can be assigned arbitrarily.

If r = n, a unique solution is obtained. Otherwise, we say that
an (n — r)-fold infinity of solutions exists. The numbern —r = d
may be called the defect of the system (1). We notice that if the
system (1) is consistent and r is less than m, then m — r of the
equations (namely, those which correspond to the residual equations)
are actually ignorable, since they are implied by the remaining r
equations.

The reduction may be illustrated by considering the four simul-
taneous equations

X1 + 2%2 - X3 = 224 = —1,
2£B1+ $z+ T3 — x4=4,
1 — T2+ 28+ Tu=35,

1 +3$2 = 2(123 — 3274 = —3
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It is easily verified that after two steps in the reduction one obtains
the equivalent set

z1 + s =3,

Ty — Ty — T = —2,
0=0,
0=0

Hence the system is of defect two. If we write 23 = ¢, and z4 = ¢,
it follows that the general solution can be expressed in the form

ZT1=83—¢, Ta=—2+c1+cCy Tz=2¢, Ta=Cc, (8a)

where ¢; and c; are arbitrary constants. ‘This two-parameter
family of solutions can also be written in the symbolic form

{z1, T3, 23, z} = {3, —2,0,0} + af{—1,1, 1, 0} 4+ ¢{0, 1,0, 1}.
(8b)

It follows also that the third and fourth equations of (7) must
be consequences of the first two equations. Indeed, the third
equation is obtained by subtracting the first from the second, and
the fourth by subtracting one-third of the second from five-thirds
of the first.

The Gauss-Jordan reduction is useful in actually obtaining
numerical solutions of ‘sets of linear equations,* and it has been
presented here also for the purpose of motivating certain definitions
and terminologies which follow. :

1.3. Matrices. The set of equations (1) can be visualized as
a linear transformation in which the set of » numbers {z1, X3y . ...,

: * In place of eliminating z: from all equations except the kth, in the kth
‘step, one may eliminate zx only in those equations following the kth equation.
When the process terminates, after r steps, the rth unknown is given explicitly
by the rth equation. The (r — 1)th unknown is then determined by substitu-
tion in the (r — 1)th equation, and the solution is completed by working back
in this way to the first equation. = The method just outlined is associated with
the name of Gauss. In order that the “round-off”” errors be as small as possible,
it is desirable that the sequence of eliminations be ordered such that the coeffi-
cient of z; in the equation used to eliminate z; is as large as possible in absolute
value, relative to the remaining coefficients in that equation.
A modification of this method, due to Crout (Referénce 7), which is par-
ticularly well adapted to the use of desk computing machines, is described in an
appendix. i
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x4} is transformed into the set of m numbers {ei, cs, . ¢ . , Cm}.
The transformation is clearly specified by the coefficients a;;.

The rectangular array of these coefficients, usually enclosed in
square brackets, '

@11 Gy Qin
a a « s e a

a=la=| " 7 7 " b ©)
Ami Amz * ° * Qmn

which consists of m rows and n columns of elements, is called an
m X m-matriz when certain laws of combination, yet to be specified,
are laid down. In the symbol a;;, representing a typical element,
the first subscript (here 7) denotes the row and the second subscript
(here j) the column occupied by the element.

The sets of quantities z; 6 =1,2,...,n)andc (¢t =1, 2,

. , m) are conventionally represented as matrices of one column
each. In order to emphasize the fact that a matrix consists of
only one column, it is convenient to indicate it by braces, rather
than brackets, and so to write

Z1 C1
T2 62‘

x={ml={ 3 c={a}=( ¢ (10a,b)
Tn Cm

For convenience in writing, the elements of a one-column matrix
are frequently arranged horizontally, the use of braces then serving
to indicate the transposition.

If we visualize (1) as stating that the matrix a transforms the
one-column matrix x into the one-column matrix ¢, it is natural to
write the transformation in the form

ax =c, . (11)

where a = .[a;;], x = {z:}, and ¢ = {¢}.
On the other hand, the set of equations (1) can be written in the
form .

dam=a (=12 ---,m), (12)
k=1 .
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which leads to the matrix equation
{3 auzs} = e (12a)
k=1

Hence, if (11) and (12a) are to be equivalent, we are led to the
definition

n

ax = [au]{z:} = {1‘2 aikxk}' (13)
=1
Formally, we merely replace the column subscript in the general term
of the first factor by a new dummy index k, and replace the row
subscript in the general term of the second factor by the same
dummy index, and sum over that index.

The definition is clearly applicable only when the number of
columns in the first factor is equal to the number of rows (elements)
in the second factor. Unless this condition is satisfied, the product
is undefined. '

We notice that a: is the element in the ith row and kth column
of a, and that z) is the kth element in the one-column matrix x.
Since i ranges from 1 to m in ay;, the definition (13) states that the
product of an m X n-matrix into an n X l-matrix is an m X 1-
matrix (m elements in one column). The 7th element in the product
is obtained from the 7th row of the first factor and the single column
of the second factor, by multiplying together the first elements,
second elements, and so forth, and adding these products together
algebraically. '

Thus, for example, the definition leads to the result

1 0 1 1-14+0-2 1
2 1-{2l= 2:14+1-2p =144
-1 2 —-1-142-2 3

Now suppose that the n variables z,, . . . , z, are expressed as
linear combinations of s new variables vy, . . . , ¥, that is, that a
set of relations holds of the form

= Xobar  @E=1,2 -, ). (14)
k=1

If the original variables satisfy (12), the equations satisfied by the
new variables are obtained by introducing (14) into (12).  In addi-
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tion to replacing ¢ by k in (14), for this introduction, we must
clearly replace k in (14) by a new dummy index, say /, to avoid

ambiguity of notation. The result of the substitution then takes
the form :

im(ﬁﬂwb=w G=1,2 ---,m), (15
k=1 lml t

or, since the order in which the finite sums are formed is immaterial,

S (D awbu)u=c =12, m.  (15b)
I=1 “k=1
In matrix notation, the transformation (14) takes the form
x=by (16)

and, corresponding to (15a), the introduction of (16) into (11) gives

a(by) =c. (17)
But if we write .
S =1,2 m
ii = ! b 1. e ! 1
= kzﬂ:'lakM (.7=172) 78> (8)
equation (15b) takes the form
Epayz=c1~ =12 ---,m),

=1
and hence, in accordance with (12) and (13), the matrix form of the
transformation (15b) is
Py =C¢. (19)
Thus it follows that the result of operating on y by b, and on the
product by a [given by the left-hand member of (17)], is the same

as the result of operating on y directly by the matrix p. We
accordingly define this matrix to be the product a b,

ab = [aullby] = [k$1 aikbkj]- (20)

Recalling that the first subscript in each case is the row index
and the second the column index, we see that if the first factor has
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m rows and n columns, and the second n rows and s columns, the
index 7 in the right-hand member may vary from 1 to m while the
index j in that member may vary from 1 to s. Hence, the product
of an m X n-matriz into an n X s-mairiz is an m X s-matriz. The
element p;; in the ith row and jth column of the product is formed
by multiplying together corresponding elements of the ith row of
the first factor and the jth column of the second factor, and adding
the results algebraically.
Thus, for example, we have

1 o 11| 2 1

1 —2 1jjl 91!

_ 210
. '(1-1+0-1+1-2)(1-2+0-0+1-1)(1-1+o-1+1-0)}
(1-1-2-141.2)(1-2-2:04+1-1)(1-1=2:1+1-0)]

- [3 3 1]'
1 3 -1

We notice that a b is defined only if the number of columns in a
is equal to the number of rows in b. In this case, the two matrices
are said to be conformable in the order stated.

If a is an m X n-matrix and b an n X m-matrix, then a and b
are conformable in either order, the product a b then being a square:
matrix of order m and the product b a a square matrix of order n.
Even in the case when a and b are square matrices of the same order
the products a b and b a are not generally equal. For example, in
the case of two square matrices of order two we have

‘a1 G2 | [bu bae] (@111 + Gisbar  Guibis + aubn]

| @21 @22 ] | bar Das | a21b11 + Gasbar  Garbia + Gazbas
and also

(b bia] [an a1 _ [@11b11 + @ubrz  @usbu + anbu].

Lbn baz | L G21 Gas ] anba + anbaz  G1ba1 + Gasbas

Thus, in multiplying b by a in such cases, we must carefully dis-
tinguish premultiplication (a b) from postmultiplication (b a).

The sum of two m X n-matrices [a;;] and [b;] is defined to be the
matrix [a; + b;]. Furtheér, the product of a number k and &



