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Preface to the second edition

This second edition of “Polynomial representations of GL, (K" consists of
two parts. The first part is a corrected version of the original text, formatted
in I¥TRX, and retaining the original numbering of sections, equations, etc.
The second is an Appendix, which is largely independent of the first part, but
which leads to an algebra L(n,r), defined by P. Littelmann, which is analogous
to the Schur algebra S(n,r). It is hoped that, in the future, there will be a
structure theory of L(n,r) rather like that which underlies the construction
of Kac-Moody Lie algebras.

We use two operators which act on “words”. The first of these is due
to C. Schensted (1961). The second is due to Littelmann, and goes back to
a 1938 paper by G. de B. Robinson on the representations of a finite symmetric
group. Littelmann’s operators form the basis of his elegant and powerful “path
model” of the representation theory of classical groups. In our Appendix we
use Littelmann’s theory only in its simplest case, i.e. for GL,,.

Essential to my plan was to establish two basic facts connecting the oper-
ations of Schensted and Littelmann. To these “facts”, or rather conjectures,
I gave the names Theorem A and Proposition B. Many examples suggested
that these conjectures are true, and not particularly deep. But I could not
prove either of them.

This work was therefore stalled, until T sought the help of my colleagues
Karin Erdmann and Manfred Schocker. They accepted the challenge, and
within a few wecks produced proofs of both conjectures. Their proofs consti-
tute the heart of the Appendix, and make it possible to begin a comparison
of the Littelmann algebra L(n,r) with the Schur algebra S(n,r). Karin and
Manfred have made this Appendix possible, and have written large parts of
the text. It has been a happy experience for me to work with them.

A few weeks before the final manuscript of the Appendix was ready, we
heard that A. Lascoux, B. Leclerc and J.-Y. Thibon have published a work
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on “The plactic monoid”, which contains results equivalent to Theorem A and
Proposition B. Their methods are rather different from ours, and they prove
also many important facts which do not come into our Appendix. We give a
brief summary of this work in §D.11.

Oxford, August 2006 Sandy (J. A.) Green
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Introduction

Issai Schur determined the polynomial representations of the complex gen-
eral linear group GL,,(C) in his doctoral dissertation [47], published in 1901.
This remarkable work contained many very original ideas, developed with su-
perb algebraic skill. Schur showed that these representations are completely
reducible, that each irreducible one is “homogeneous™ of some degree r > 0
(see 2.2), and that the equivalence types of irreducible polynomial representa-
tions of GL,,(C), of fixed homogeneous degree r, are in one-one correspondence
with the partitions A = (Aq,....\,) of r into not more than n parts. Moreover
Schur showed that the character of an irreducible representation of type A is
given by a certain symmetric function Sy in n variables (since described as
“Schur function™; see 3.5). An essential part of Schur’s technique was to set
up a correspondence between representations of GL,, (C) of fixed homogeneous
degree r, and representations of the finite symmetric group G(r) on r sym-
bols, and through this correspondence to apply G. Frobenius’ discovery of the
characters of G(r) (see [17]).

This pioneering achievement of Schur was one of the main inspirations
for Hermann Weyl's monumental researches on the representation theory of
semi-simple Lie groups [54]. Of course Weyl’s methods, based on the repre-
sentation theory of the Lie algebra of the Lie group I', and the possibility
of integrating over a compact form of I, were very different from the purely
algebraic methods of Schur’s dissertation; in particular Weyl's general theory
contained nothing to correspond to the symmetric group G(r). In 1927 Schur
published another paper [48] on GL,,(C), which has deservedly become a clas-
sic. In this he exploited the “dual” actions of GL,(C) and G(r) on r*" tensor
space E®7 (see 2.6) to rederive all the results of his 1901 dissertation in a new
and very economical way. Weyl publicized the method of Schur’s 1927 paper,
with its attractive use of the “double centralizer property™, in his influential
book “The Classical Groups” [55]. In fact the exposition in Chapters 3B and 4
of that book has become a standard treatment of polynomial representations
of GL,,(C) (and, incidentally, of Alfred Young’s representation theory of the
symmetric group G(r)), and perhaps this explains the comparative neglect of
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Schur’s work of 1901. I think this neglect is a pity, because the methods of this
carlier work are in some ways very much in keeping with the present-day ideas
on representations of algebraic groups. It is the purpose of these lectures to
give some accounts, in part based on the ideas of Schur’s 1901 dissertation, of
the polynomial representations of the general linear groups GL, (K), where K
is an infinite field of arbitrary characteristic.

Our treatment will be “elementary”™ in the sense that we shall not use
algebraic group theory in our main discussion. But it might be interesting to
indicate here some general ideas from the representation theory of algebraic
groups (or algebraic semigroups, since the group inverse is not important in
this context), which are relevant to our work.

Let T" be any semigroup (i.e. I' is a set, equipped with an associative
multiplication) with identity 1p, and let A" be any field. A representation T
of I' on a K-space V' (i.e. a vector space over K) is amap 7 : ' — Endg (V)
which satisfies 7(g¢’) = 7(g)7(¢'), 7(1r) = Iy, for all g, ¢’ € T'. (For any set V,
we denote by Iy the identity map on V.) We can extend 7 linearly to give
a map of K-algebras 7 : KI' — Endg (V); here AT is the semigroup-algebra
of I" over K, whose elements are all formal linear combinations

K= Z Kgg, kg€ K,

gel’

whose support suppr = { g € I : x, # 0} is finite. We can make KT act on V
by kv = 7(k)(v) (k € KT, v € V), and thereby get a left KT-module, de-
noted (V. 7), or simply V. A KT-map between such KT-modules (V. 1), (V'.7')
is, by definition, a K-map f : V — V' (i.e. f is a linear map) which satis-
fies 7'(g)f = f7(g) for all ¢ € I'. A KI'-map which is bijective is a KT'-
isomorphism, or an equivalence between the representations 7, /. One has
analogous definitions for right KT-modules; a right KT-module can be re-
carded as a pair (V,7) where 7 : I' — Endg (V) is an anti-representation of I'
on the K-space V. i.e. 7(gq’) = 7(¢')7(g) for all g.¢' € I'. 7(1p) = 1.

The set KT of all maps I' — K is a commutative K-algebra, with algebra
operations defined “pointwise”, e.g. f [’ is defined to take g — f(g)f'(g), for
every element (“point™) ¢ of I'. The identity element 1 of K takes each g € I’
to the identity element 15 of K. If s € I' and f € KU, then the left and right
translates of f by s are defined to be the maps L. f. R,f : I' — K given by

Lif:g— f(sg9), Rsf:g9— f(gs), g€l.

Each of the operators L,. R, maps K into itself and is a K-algebra map
(i.e. K-algebra homomorphism) AT — K. In particular, L,, R, both belong
to the space Endg (K1) It is easy to check that R : s — R, gives a representa-
tion of I on KT, while L : s — L, gives an anti-representation. Thus K can
be made into a left AT-module (using R) and a right KT-module (using L).
We denote both module actions by o, so that if s € I' and f € K' we write

sof=Rsf and fos=Lf.
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Notice that these actions commute: (so f)ot = so (fot) for all s,t € T’
and f € K'. There is a linear map K' @ KU — K" (® means @g)
which takes f @ f’ (f.f € K') to the function mapping I' x I' — K
by (s,t) — f(s)f'(t), for all s,t € I'. This linear map is injective, and we
use it to identify K @ KU with a subspace of K'*'.

The semigroup structure on I' gives rise to two maps

A:K" S K™ and e: KU - K,

as follows: if f € KR!, then Af : (s,t) +— f(st), and £(f) = f(1p). Both A, ¢
are K-algebra maps. We shall say that an element f € KU is finitary, or is
a representative function, if it satisfies any one of the conditions F1, F2, F3
below: these three conditions are in fact equivalent (see e.g. [24, Chapter 2]).
F1. The left KT-submodule KT o f generated by f is finite-dimensional.
F2. The right KT'-submodule f o KT generated by f is finite-dimensional.
F3. Af € K" @ K. This means that there exist elements f,, f, € KT
(where h runs over some finite index set) such that

(la) Af=> f,&f
h

This equation is equivalent to the system of equations

(1b)  f(st Zf,, )f1(1), all 5,1 € T.

It is also equivalent to each of the following systems
(le) tof=> fit)fy allteT,
h

or

(1d) jos*th s)fy. all s €T

The set I = F(KT) of all finitary functions f : I' — K is a K-bialgebra
(see [51] for the definitions of coalgebras and bialgebras). It is a K-subalgebra
of KT, and is also closed to A in the sense that AF C F& F (this means that
if f is finitary, the functions f,, f; in (la) can be chosen to be themselves
finitary). The K-space F, equipped with the maps A : F — F@F,e: F — K,
is a K-coalgebra; these two structures on F, of algebra and coalgebra, are
linked by the fact that A and € are both K-algebra maps (see [24, p. 15]).
Finitary functions on I' appear as coefficient functions of finite-dimen-
sional representations of I'. Suppose 7 is a representation of I' on a finite-
dimensional K-space V. If {v, : b € B} is a K-basis of V, we have equations

(le)  7(9)vs = gvo = Y rap(g)va, for g €T, b€ B;
aeB
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here rq,(g) € K. The functions r,, : I' — K (a,b € B) are called coefficient
functions of T, or of the KT-module V' = (V, 7). The K-span of these functions
is a subspace of K called the coefficient space! of 7, or of the KT-module V.
We denote this space by cf(V) = Z”.,I K - ry; it is elementary to verify
that it is independent of the choice of the basis {v,}. The matrix R = (r.)
gives a matriz representation of T', i.e. R(gq’) = R(g)R(g"), R(1r) = (dup)
for all g.¢" € I' (44 is the Kronecker delta). These conditions translate into
conditions on the coefficients r,,, viz.

(1f) Argp = Z Fac @ Tebs  €(Pap) = Oap, all a,b € B.
ceEB

The matrix R = (r4) is sometimes called an “invariant matrix” [20, p. 140].
From the first equations it follows that all the coefficient functions r,, are
finitary, hence that cf(V) is a subspace of I = F(K"). But (1f) also shows
that C' = cf(V) is a subcoalgebra of F. i.c. that AC' C C' @ C."As a matter
of fact, every finitary function f : ' — K lies in the coeflicient space of some
finite-dimensional AT-module V; for this purpose we could take V= KT o f
(see F1). It is for this reason that finitary functions are sometimes called
“representative functions™.

If S is any A-algebra (possibly of infinite dimension as K-space), mod(.S)
shall denote the category of all finite-dimensional left S-modules. Simi-
larly, mod’(S) is the category of all finite-dimensional right S-modules. An
algebraic representation theory of T over K could be defined as follows: first
choose a subcoalgebra A of F(RKT), i.c. A is a K-subspace of F(K") satis-
fving AA C A« A. Then “A-representation theory™ of I', is defined to be
the study of the full subcategory mod 4 (KT") of mod(AT"), whose objects are
all finite-dimensional left AKT-modules V such that cf(V) C A. (The mor-
phisms f : V — V' between two objects V, V' of this category are, by
definition, just the KT-maps.) In some contexts we say that a AKT-module V/
is “rational”, or more precisely “A-rational”, if cf(V) C A; then mod 4 (AT) is
the category of finite-dimensional A-rational left A'T-modules. It is clear that
submodules, quotient-modules and finite direct sums of A-rational modules,
are themselves A-rational. We can define the category mod’y(KT) of finite-
dimensional right AT-modules which are A-rational in the same way. The
assumption AA C A @ A implies that if f € A, then the functions f,. f} ap-
pearing in (1a) can themselves be chosen to belong to A. Then from (1c). (1d)
follows that A is a left and right AT-submodule of KT also by quite elemen-
tary calculations that any finite-dimensional left (or right) AT-submodule V
of A belongs to the category mod 4(KT) (or mod’,(KT)).

Examples.

1. Let I' be an affine algebraic group over an algebraically closed field K (see
for example [24, p. 21]), and A = K[I'] the ring of regular functions on I

'In [24], this is called the “space of representative functions™ of 7, or V.
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(A is often called the affine ring of I'). Then mod4(AT) is the category
of rational (finite-dimensional) KT-modules in the usual sense of algebraic
group theory. In this case, 4 is not only a subcoalgebra of F(K'), but a
subbialgebra (see [49, p. 46]). The same remarks apply when I is an affine
algebraic semigroup.

2. Let I' be a finite semigroup. then of course F(KT) = KT If we take A = KT,
then mod 4 (KT') = mod(AT'). The (left and right) KT-module structures
on A, are dual to the (right and left) “regular” KT-module structures
on K given by multiplication: we may identify KU with the dual space
(KT)* = Homg (KT, K).

3. Let K be an infinite field. n a positive integer, and I' = GL,(K), the
group of all non-singular n x n matrices with coefficients in K. We could
take A = Ay (n). the ring of all polynomial functions f: ' — K (see 2.1).
The objects (V,7) in mods(AT) (we shall later denote this category
by My (n). see 2.2) are called polynomial KT-modules, and the associated
representations (including the matrix representations R = (r,;,) obtained
by using the K-bases {v,} of V') are called polynomial representations of T'.
The study of such representations is the subject of these lectures. We get
another category (denoted by My (n,r) in 2.2) by taking A = Ag(n,7r).
the space of polynomial functions on I' which are homogeneous of degree r
in the n? coefficients of a general element g € T' (see 2.1 for a precise for-
mulation). Finally we might mention that Ay (n) can also be regarded as
the affine ring of the algebraic semigroup M, (K') of all n x n matrices (sin-
gular or not) over KA, so that we may regard polynomial representations
of GL,,(K'), as rational representations of M, (K’), and conversely.

Now suppose once more that I' is an arbitrary semigroup with identity 1p,
and that A is a subcoalgebra of the space F(K') of all finitary functions
on I'. Then A is itself a coalgebra, relative to the maps A: A — A® A
and ¢: A— K. So we may consider the category com(A) of all right
A-comodules; an object V of com(A) is a finite-dimensional K-space, together
with a “structure map” v : V — V ® A which is K-linear and satisfies the
identities (v @ L4)y = (I} @ A)y, (Iy: @ £)y = I} (see [20, p. 138], where a
right A-comodule is perversely referred to as a left A-comodule; better ref-
erences are (24, p. 16], [49, p. 38] or [51, p. 30]). Our category mod 4 (KT) is
equivalent to com(A), as follows: if V€ mod4(KAT), take any K-basis {v,}
of V and write down the equations (le). Now define v : V. — V @ A to be
the K-linear map given by equations

(1g) y(vy) = Z Va &0 1ap. for b e B.

aeB

[t is easy to check that 5 is independent of the basis {v }. Moreover using (1f)
we see that v satisfies the comodule identities just given. Conversely given

an A-comodule (V,7v), use equations (1g) to define the elements r,, of A; the
comodule identities now show that (1f) hold, so we may use (1e) to define the



G 1 Introduction

left KT'-module V = (V, 7). It is evident that cf(V) C A. So every A-rational.
left KT-module can be regarded as a right A-comodule, and conversely. The
definition of morphism f : V — V' in com(A) (see the references cited) is
such that these morphisms are the same as KT'-maps in mod 4(KT).

This formal transition from KAT-modules to A-comodules is rather trivial,
but it is nevertheless worth making, from several points of view. To begin
with, the basic representation theory of arbitrary A-comodules (we should
here work in the category Com(A), whose objects V = (V,~) are possibly
infinite-dimensional) follows to a surprising extent the pattern discovered by
R. Brauer and C. Nesbitt for finite-dimensional algebras (see [5, 20]). Included
here is the possibility of a modular theory, which we shall discuss below.

Next, the A-comodule interpretation also permits us to profit by an im-
portant fact, namely that every right A-comodule can be regarded as a left
module for the A-algebra A* = Hompg (A. ). The algebra structure in A*
is the dual of the coalgebra structure on A, ie. if £,n € A*, we define the
product? £ to be the map of A into K which takes the element f € A to

(th) &) =D _&(mlfh),

h
see (la). The identity element of A* is e : A — K. If V = (V,~) belongs
to com(A), we make V into an A*-module by the rule v = (Iy ® &)(v(v)).
for £ € A*, v € V. Working in terms of a basis {v,} of V. this rule becomes
(see (1g))

(1i) vy = Z E(rap)va, for b € B.

a€B

Therefore we have three kinds of matrix representation associated with our
original KT-module V' = (V| 1), relative to the basis {v,}:

(i) the representation g — (r.(g)) of T';

(ii) the matrix R = (r,;) whose elements are functions on I', satisfying equa-
tions (1f), and which can be thought of as a kind of representation of the
coalgebra A;

(iii) the representation & — (&(rqp)) of the algebra A*, given by equations (1i).

We can recover (i) from (iii) very easily: for each g € I' let ¢ : A — K
be “evaluation at g”, i.e. e,(f) = f(g). for all f € A. Then ¢, € A", and
the map e : I' — A* satisfies eje, = €49, €1, = ¢, for g. g’ € I'. So e may
be extended linearly to a K-algebra map e : KT' — A* and if we compose
the representation (iii) with e, we recover (i).

If A is finite-dimensional, then it is quite elementary to show that the
two categories mod4(KT) and mod(A*) are equivalent; this amounts to
showing that every finite-dimensional left A*-module V' yields a module
in mod 4(KT") by composition with the map e. Schur exploited this fact in

2 . . . .
“This product is often called “convolution™.
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the case A = Ay (n,r), and could thereby work with the finite-dimensional
algebra Ag(n,r)* = Sk (n,r) (which I have called the “Schur algebra” in
these lectures, see 2.3, 2.4), instead of with the infinite-dimensional and irrel-
evantly complicated group algebra KT'.

If A is infinite-dimensional, it is useful in many cases to regard mod-
ules V € mod 4 (KT') as modules over some “dense” subalgebra S of A* (S is
dense in A* if, for every 0 # a € A, there is some £ € S such that £(a) # 0).
When A = K|[I'] is the affine ring of a connected algebraic group I' over an
algebraically closed field A', one may take S the “hyperalgebra”™ hy(I') of I’
(see [9, §6]). In case T' is simply-connected and semisimple, the correspon-
dence between mod (A1) and mod(S) sets up an equivalence of categories
(J. Sullivan; see [9, 6.8]). Moreover in that case hy(I') can be identified with
an algebra Uy constructed out of the complex semisimple Lie algebra as-
sociated with the root system of I' (W. Haboush; [9, 6.5, 6.6] or [22, 1.3]).
This algebra Uy (which is sometimes defined to be the hypéralgebra of I')
has an explicit basis with sufficiently good multiplicative properties to make
it immensely valuable in studying the rational representations of I'. In an
important paper [6] R. Carter and G. Lusztig have used the hyperalgebra -
rather than the Schur algebra— to investigate the polynomial representations
of I' = GL, (K).

Carter-Lusztig use the idea, which is derived from C. Chevalley’s funda-
mental paper [7] on split semisimple algebraic groups, that the family of all
groups GL,, (K) (n fixed, K varying over some class K of commutative rings)
is “defined over Z”. This makes possible a “modular theory”™ for the poly-
nomial representations of these groups, which in its essentials corresponds to
R. Brauer’s modular representation theory for finite groups. We can give a
sufficiently general setting for such a theory as follows. Suppose we have a
family {I'x, Ax }, where for each K in the class K of all infinite fields, I' is
a semigroup and Ay is a K-subcoalgebra of F(KT*). Suppose also that the
following two conditions are satisfied. (Q denotes the rational field.)

Z1. The Q-coalgebra Ag = (Ag, Ag.eg) contains a Z-form Az, i.e. (a) Az is
a lattice in Ag, which means Ay = %" Za, for some Q-basis {a, } of Ag,
and (b) Ag(Az) € Az @ Az, eg(Az) C Z.

Z2. For cach K € K there is a K-coalgebra isomorphism ag : Az @ K — Ak
(here @ means @z, and Az ® K is made into a K-coalgebra by “extension
of scalars™).

In this case we say that the family {T'x. Ag} is defined over Z by means
of AZ
Examples.

4. Let m: Gec — Endc E be a faithful representation of a complex semisimple
Lie algebra G¢ over a complex vector space E of finite dimension n, and
let E7z be an “admissible lattice™ in E (see [4, p. A-5] or [50, p. 17]). For
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each K € K let 'k be the Chevalley group over K defined by 7. F7;
its elements can be regarded as matrices ¢ = (g,,,) in SL,(K). For each

pair (s, 1/) define the (()(‘ﬂl(‘l(‘llt function & : g — guv- From the equa-

ny
tions Ach iz =3 4 ;[1\/\/' cy,,» we deduce that the K-subalgebra generated by
all the ¢ '“, is a K-subcoalgebra (hence even a K-subbialgebra) of F(RK#):

we take this to be Agx. Chevalley showed in [7] (see also [4, §4]) that the
family {I'yx. A} is defined over Z. Ilu‘ relevant Z-form Az of Ay is just
the subring of Ag generated by the ¢ ; the nmps ap are K- dl;.,olnd (as
well as K'-coalgebra) isomorphisms, (m(l take (/“' R 1k — (“,, for all y. v.
(From the standpoint of algebraic group theory, each pair (I'y, Ay) is
an affine algebraic group defined over K, and the family {I'y. Ax} is an
“affine group scheme over Z7, defined by the Z-bialgebra A;. See [49,
p. 46].)

Fix a positive integer n, and let I'y = GL,,(K) for each K" € K. For Ay
we may take either Agx(n), or Ag(n,r) for some fixed r > 0 (see 2.1). It is
completely elementary to verify that in each case the family {['y, Ax } is
defined over Z; the relevant Z-forms Az (n), Az(n,r) are described in 2.5.
In these lectures, we study the family {I'x, Ax (n,7)}.

[}

The first essential of the modular representation theory of any fam-
ily {I'x, A} which is defined over Z, is the process of modular reduc-
tion. We shall write My for the category moda, (KT'k), for any K € K.
Then an object Vg in My is a finite-dimensional Q-space on which I'g acts.
If {vyg : be B} isa Q-basis of Vi, we have equations like (1e)

(Lj)  gwao Z r2 ( Ve, for g e g, be B.
acB

Here the functions l I)elong to Ag. and satisfy equations like (1f). We make
the following de hmtlon. a subset V7 of Vy is called a Z-form (or admissible
lattice) of Vi if

(a) Vzis a lattice in V. which means Vi, = >, Zuvy, g for some Q-basis {v, o}
of Vg, and

(b) All the coefficient functions r"f,,. relative to this basis, lie in Az.

Another way of expressing condition (b) is to convert Vg into an Ag-co-
module by means of the map g : Vi — Vy @ Ag. using equations like ( 2).
Then (b) is equivalent to

(b) v(Vz) C Vz ® Az.

Now suppose that K € K. We can make the K-space Vi = V@ K (here @
means &z) into an object of My, as follows. Define r ",, =ak( ,@h @ 1lg) € Ag,
using th(‘ K-coalgebra isomorphism oy @ Ay @ K — Ag postulated in Z2.
These 1 ”,, satisfy equations like (1f). So we may define an action of I'yr on Vi
by equations
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(1k) guh Kk = Z ’r:I:\I‘:(.(/)”n.I\'- for g€ l‘l\'w be B.
aeB

Here vy, = w9 @ 1g, for b € B. The process by which Vg is converted.
via the Z-form V7, into Vi is called modular reduction. A general theorem
guarantees that cach Vi € My possesses at least one Z-form V7 (see [49. Lem-
ma 2, p. 43] or [20, (2.2d), p. 159]). Different Z-forms V7, V7, ... of the same Vj
may give non-isomorphic Viy = Vz @ K.V}, = V/ @ K. ... in My, but another
general theorem (due in its original form to Brauer and Nesbitt) says that
all these modules Vi, Vi, ... have the same composition factor multiplicities:
from this the notion of decomposition numbers can be defined (see [49, p. 44]
or 20, (2.5a), p. 162]).

In these lectures we take I' = GL,,(/'), where K is an infinite field, and
study AT-modules V' = (V. 7). which belong to the category My (n.r), for a
fixed homogeneity degree r (see Example 3, above). In chapter 2 the Schur al-
gebra Sk (n,r) is defined, and it is shown how A T-modules in M (n,r) can be
regarded as left Sy (n.r)-modules, and conversely. An alternative description
of Sk (n.r) is that it is the endomorphism algebra of the " tensor space E“" .
when the latter is given its natural structure as a module for the symmetric
group G/(r). This has as corollary Schur’s theorem (2.6¢e): if char K’ = 0. then
every module V in My (n.r) is completely reducible.

Schur’s multiplication rule for Sy (n,r) (see (2.3b)) provides an effective
method for calculating with modules in A (n, 7). For example, the “weight
spaces” of such a module V' are easily expressed in terms of certain idempotent
elements &, in Sk (n,r). Weights and characters are discussed in chapter 3.
By definition, the character of V is a symmetric polynomial over Z, which
is homogeneous of degree r in a set of n variables Xy, ..., X,. In 3.5 is re-
produced the argument by which Schur showed that the isomorphism classes
of irreducible modules in Mg (n.7) are in one-one correspondence with the
partitions A = (A1,...,A,) of r into not more than n parts. Of course Schur
considered only the case K = C, but his argument requires only minor modi-
fication for an arbitrary infinite field A. The character of an irreducible mod-
ule of type A depends only on the characteristic p of K'; we write this ¢y .
For p # 0 these characters have not yet been determined except in special
cases. For p = 0, Schur showed in [47] that they are the symmetric functions
now known as “Schur functions”™. A proof of this is given at then end of 3.5 —
our proof uses some identities involving symmetric functions which can be
found, for example, in I. G. Macdonald’s recent book [39].

In chapters 4 and 5, I have departed widely from Schur’s dissertation.
These chapters are concerned with the construction, for each A and for each A,
of two modules Dy x and V) x in our category My (n.r). They are “explicit”
in the sense that a basis can be given for each. They are dual to each other,
in the sense of the “contravariant™ duality described in 2.7. V) g has a unique
irreducible factor module; this is denoted Fy . Dy x has a unique mini-
mal submodule, which is isomorphic to F) x. The set {F\ x}, as A ranges
over all partitions A of r into not more than n parts, gives a full set of



