A BUTE BOON >

ASSEMBLY LANGUAGE
PROGRAMMING FOR THE
ATARI COMPUTERS

MARK CHASIN

ASSEMBLY
LANGUAGE
PROGRAMMING
FOR THE ATARI
COMPUTERS

MARK CHASIN

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogotd Guatemala Hamburg Johannesburg
Lisbon London Madrid Mexico Montreal
New Delhi Panama Paris San Juan

S&o Paulo Singapore Sydney Tokyo Toronto

The author of the programs provided with this book has carefully reviewed
them to ensure their performance in accordance with the specifications
described in the book. Neither the author nor McGraw-Hill, however,
makes any warranties whatever concerning the programs. They assume no
responsibility or liability of any kind for errors in the programs or for the
consequences of any such errors.

ATARI is a registered trademark of Atari, Inc., Sunnyvale, CA.

ASSEMBLY LANGUAGE PROGRAMMING
FOR THE ATARI COMPUTERS

Copyright © 1984 by Mark Chasin. All rights reserved. Printed in the
United States of America. Except as permitted under the % d States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or re-
trieval system, without the prior written permission of the publisher.

A BYTE Book.

1234567890 SEM SEM 893210987654

ISBN 0-07?-010L79-7

LBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA
Chasin, Mark.

Assembly language programming for the Atari
computers.

(A Byte book)

Includes index.

1. Atari computer — Programming. 2. Assembler
language (Computer program language) 1. Title.
II. Series.
QA76.8.A82C43 1984 001.64'.24 84-11214
ISBN 0-07-010679-7

The editor for this book was Barbara Brooks;
and the editing supervisor was Marthe Grice.
Book design by Sharkey Design.

ASSEMBLY
LANGUAGE
PROGRAMMING
FOR THE ATARI
COMPUTERS

SOFTWARE AVAILABLE

All programs described in this book are available on disk,
fully documented and ready to run or modify. You can
order this disk by sending a check or money order for
$12.95*, along with your name and address, to:

MMG Micro Software
P.O. Box 131
Marlboro, NJ 07746

*New Jersey residents, please add 6% sales tax. Please
allow 2 weeks for all personal checks to clear.

NOTE This software is a product of MMG Micro
Software and is not an offering of McGraw-Hill, Inc. We
include information concerning this product as a service
to our readers.

PREFACE

Since you’ve picked this book up and started browsing through
it, you probably own or have access to an ATARI computer and are
interested in progressing beyond BASIC. As you already know, the
ATARI computers are among the most impressive of all home com-
puters, but many of their special features are not available from
BASIC.

This book is designed to teach assembly language programming
to anyone who understands ATARI BASIC. Yes, anyone! You’ve
probably read other books and articles which create a mystical aura
around assembly language, or else use the phrase machine language
as if it were the secret code to unlock the door to the Thief of
Bagdad’s treasure troves. Of course, only the privileged get to look
at this secret treasure.

Bunk! Anyone who has programmed in BASIC, or any other
language for that matter, can learn to program in assembly lan-
guage, given the desire and the correct instruction in the language.
This book provides the tools you need. Each programming lan-
guage — BASIC or PILOT or FORTH or, yes, even assembly lan-
guage — has its own words which stand for certain operations. One
example is PRINT in BASIC, which directs information to your
TV screen. The combination of these words, and the way they must
be strung together to make the computer do what you want it to do,
is called the syntax of the language.

In this book, you will learn the syntax of assembly language, and
you will also learn, by frequent examples, how to use assembly
language to make your ATARI perform tasks which are either im-
possible from BASIC or 200 times slower in BASIC. The examples
are fully documented both by frequent remarks and by a thorough
discussion of the purpose, programming techniques, and theory,
where appropriate, of each program. This discussion allows you to
progress beyond the examples and to write your own subroutines or

viii

even whole assembly language programs for the ATARI. Further-
more, the routines in this book follow the “rules” established by
ATARI for assembly language programmers, so they will work with
any ATARI computer, from the earliest 400, to the most advanced
1450XLD, and everything in between.

Examples are given both in assembly language and, wherever
possible, also in BASIC programs which incorporate these assem-
bly language routines to perform tasks from BASIC. These rou-
tines can be used immediately in your own programs. In fact, you
can use the enclosed order form to obtain on disk all assembly
language and BASIC programs in this book. The disk is ready to
run or modify for your own uses. Included on disk and here are
such techniques as reading the joysticks, moving players and mis-
siles, input or output to all possible devices such as printers, disk
drives, cassette recorders, the screen and more, vertical blank inter-
rupt routines, display list interrupts, fine horizontal and vertical
scrolling, sound, graphics — in short, everything you’ve always
heard the ATARI computers were capable of but had no idea how
to program.

One entire chapter of the book is devoted to the use of as-
semblers and how to use this book with any of the many fine as-
semblers available for the ATARI computers. You’ll need an as-
sembler, just like you need BASIC to program in BASIC, and this
book will interact with any of them.

If you’ve reached the point where BASIC is no longer enough,
and you’d like to progress to a language which gives you absolute
control over all functions of your remarkable computer, then begin
with Chapter 1, and you’ll see how easy it is. Who knows, maybe
you’ll be the one to write the sequel to STAR RAIDERS!

Mark Chasin

CONTENTS

Preface Vii

PART ONE BACKGROUND
1 Infroduction 1
2 Getting Started 11
3 The ATARI Hardware 21

PART TWO LEARNING
ASSEMBLY LANGUAGE

Nomenclature and the Instruction Set 37
Addressing Technigques 52

Assemblers for the ATARI 66

Machine Language Subroutines

for Use with ATARI BASIC 79

PART THREE APPLICATIONS
8 The Display List and Using Interrupts 113
@ Input-Output on the ATARI 149
10 Graphics and Sound from Assembly
Language 185

PART FOUR APPENDIXES
1 The 6502 Instruction Set 215
2 The Three Character Sets Used in ATARI
Computers 279
3 The ATARI Memory Map 283

Index 287

NO O D

Welcome to the world of assembly language programming for
the ATARI computers. By now, you’ve no doubt tried your hand at
programming your ATARI in BASIC and found it to be a very
easy-to-use and powerful language. But you’ve also probably
found some things that just can’t be done in BASIC, and you know
that all of the excellent real-time action games and the fast sorts
and searches are all programmed in some mysterious language
called machine language. The purpose of this book is to teach you
how to program your ATARI in the fastest, most powerful and
versatile language available, assembly language. By working your
way through this book, you will learn how to use all of the sophisti-
cated and powerful resources of one of the most impressive home
computers, the ATARI.

Most of the examples in this book will be related to BASIC, so
an understanding of BASIC will be important to the understanding
of this book. However, many types of programs that can be written
in assembly language simply have no counterparts in BASIC, and
so for these no such examples will be possible. Problems will be
presented throughout the book and it is highly recommended that
you try to work them out for yourself. In each case the answers will
be presented and discussed, in order to help you if you are having
trouble.

2 Background

VARIETIES OF PROGRAMMING
LANGUAGES

At a very fundamental level, your ATARI really only under-
stands one programming language, which is called machine lan-
guage, the language of the computing machine. A typical machine
language program might look like this:

1011010110100101.....

Now, before you put this book down and go back to BASIC,
let’s understand one thing right away: virtually no one programs
directly in machine language. Even the many programs advertised
as being written in “100% machine language” weren’t; they were
written in assembly language and then translated into machine lan-
guage. But all computer languages must at some time be translated
into machine language in order to be executed, even BASIC. That’s
right, the central “brain” of your ATARI computer doesn’t even
really understand BASIC.

BASIC:
AN INTERPRETED LANGUAGE

Let’s spend a moment discussing how a BASIC program is ex-
ecuted, in an effort to understand better what assembly and ma-
chine language really are, and how they differ.

Let’s first write a very simple BASIC program:

10 PRINT "HELLO"
20 FOR I=1 TO 200
30 NEXT I

40 PRINT "GOODBYE”
50 END

If we now type RUN and hit the RETURN key, we know that
the word HELLO will appear on our TV or monitor screen and,
after a brief pause, the word GOODBYE will appear directly below

Introduction 3

it, followed several lines later by the word READY. But exactly how
does this happen?

The cartridge containing ATARI BASIC is actually more pro-
perly called the ATARI BASIC Interpreter. An interpreter, just like
the noncomputer use of the word, is someone or something that
translates information from one form into another, whether from
English into Russian, or from BASIC into some other language. In
our case, the BASIC cartridge contains a program that can trans-
late BASIC keywords into a form understandable to our com-
puter’s “brain.” Let’s see how.

As we type line 10, the word PRINT is translated to a code for
the word PRINT, called a token. This process is called tokenizing
your BASIC program, and is done as you type each line into your
ATARI, and hit RETURN. It is this process that simultaneously
checks the syntax, or grammar rules, to be sure that you typed the
line correctly. If not, you’ll see the familiar ERROR statement im-
mediately after typing the line, and you then can correct your mis-
takes before proceeding. This ensures that when the BASIC
cartridge begins interpreting your program, it may have logical er-
rors to deal with, but at least each line is internally correct.

Having completely typed the above program, we would then
type RUN and press RETURN, which would begin the interpreta-
tion of the program. The first thing this interpreter knows is that
the beginning of the program, the place it must start when the word
RUN is typed, is the lowest-numbered line of the BASIC program.
Actually, before it ever gets there, it does quite a bit of housekeep-
ing, such as setting all variables used in your program to zero, can-
celing out any previously used strings or arrays, and many other
functions. Then it turns its attention to line 10, which is converted
into machine language by means of something called a jump table,
about which we’ll learn a great deal in Chapter 9. In any case, first
line 10 is translated, then it is executed, and then the machine lan-
guage code is thrown away, to make room for the next line, line 20.
The process of translation, execution, and discarding is repeated
for line 20 and then again for line 30, and so on.

Having now executed the entire program, and seen the READY
prompt that tells us that BASIC is ready for new instructions, what

4 Background

do you suppose will happen if we type RUN again? Right! The
entire process of translating, executing, and discarding each line
will be repeated all over again. Then we’ll see the READY prompt
again. In fact, this entire process will occur as many times as we
choose to type the word RUN. As you can no doubt see, this is a
very wasteful process. BASIC continues to repeat over and over
two of the three steps which are not actually needed to run the
program, translation and the discarding of information. If we
could only get away from the need for these two steps, imagine how
fast our program would execute. After all, if we get rid of these two
steps, the only one left is execution.

ASSEMBLY LANGUAGE:
AN ASSEMBLED LANGUAGE

Now you know the purpose of assembly language program-
ming! When we program in assembly language, by using a transla-
tor known as an assembler, we can produce the executable machine
language code which we can store, and which the computer can
execute directly. We translate it only once and we don’t discard it at
all, so we get maximum efficiency, and therefore, maximum speed.
And that’s the real benefit of assembly language programming,
speed. In fact, it is possible to write a program in assembly lan-
guage which will execute over 1000 times faster than its BASIC
equivalent! For arcade games, and very time-consuming processes
like moving blocks of memory around, searches, sorts and other
such procedures, assembly language programming can be abso-
lutely indispensable.

The other major advantage of assembly language is the abso-
lute control it gives the programmer over the computer. In BASIC,
the programmer is often separated from the nuts-and-bolts hard-
ware of the computer and doesn’t have detailed control over many
of its functions. This control is available only through assembly
language programming.

Introduction 5

INTERPRETED VERSUS ASSEMBLED
LANGUAGES

These are the advantages of assembly language programming:
speed and control. How about the disadvantages? First, of course,
is the need to learn a new computer language. This book will enable
you to do that. Second, ATARI BASIC is an interpreted language,
while assembly language is not. This becomes important when you
need to make changes in a program. In BASIC, you simply make
the change and rerun the program. For example, to change the
above program, we might simply type:

40 PRINT "GOODBYE";
50 PRINT "Y'ALL"
60 END

Now when we run the program, it will say GOODBYE Y’ALL
instead of just GOODBYE, as above. The entire change in the pro-
gram might take 15 seconds for a very slow typist. This flexibility is
a great advantage of interpreted languages. To make a similar
change in an assembly language program would require much more
typing, and then the program would have to be reassembled. This
assembly process, converting the assembly language program to
machine language, sometimes takes 15 minutes or more, depending
on the size of the program and the assembler used. Of course, our
example is very short and would not take this much time, but the
point is that making even a very simple change to an assembly lan-
guage program might take quite a while, and if you make a mis-
take, you’ll need to repeat the process all over again!

A third disadvantage of assembly language is the amount of
programming you’ll need to do to accomplish even the simplest
tasks. For instance, the PRINT statement in BASIC, which re-
quires you to type only one word, might require 20 or 30 lines of
programming in assembly language. For this reason, assembly lan-
guage programs are usually very long.

6 Background

The fourth, and last, disadvantage of assembly language is the
difficulty of understanding a printout of the program. Certainly
the PRINT statement in BASIC is far more understandable than a
series of instructions such as:

LDA #$01
STA CRSINH

or something equally obtuse. This problem can and should be over-
come by all good assembly language programmers by the inclusion
of comments on virtually every line. Comments are the assembly
language equivalent of REM statements in BASIC: they help the
programmer to remember what it was he or she was trying to ac-
complish with a given line. Certainly the above example makes
somewhat more sense when presented below with comments, even
to someone who doesn’t understand assembly language at all.

LDA #$01 ;to inhibit cursor
STA CRSINH ;poke a 1 here

Now perhaps it’s more understandable that when we see a pro-
gram advertised as written in “100% machine language,” what is
really meant is that it was written in assembly language, and then
translated once from its final form into machine language, which is
the form in which it is being sold. Such programs generally are
much faster to execute than BASIC programs, and the additional
control the programmer has over the computer allows special ef-
fects not attainable from BASIC.

There is an additional distinction between BASIC and assem-
bly language. BASIC belongs to a family of programming lan-
guages which are referred to as high-level languages. This
nomenclature refers to the ability of one simple statement to per-
form quite a complicated task, such as the PRINT example used
above. In a sense, this ease of programming also isolates the pro-
grammer from the hardware, placing him or her at arm’s length, so
to speak. It is from this view of languages such as BASIC that the
term high-level language arose. Among thousands of other high-
level languages are Pascal, FORTRAN, PILOT and Ada. In con-

Infroduction

trast to these, languages such as machine language or assembly
language are referred to as low-level languages, because to program
using them requires an understanding of the hardware and an abil-
ity to get into the real guts of the machine for which you are pro-
gramming.

WORKING WITH ASSEMBLY LANGUAGE

In order to convert an assembly language program to machine
language, we must use another program, called an assembler.
There are a number of excellent assemblers available for the ATARI
computers, and the techniques used in this book will work with any
of them. Chapter 6 is devoted to the syntax and special functions of
each assembler, but the assembly language programs listed in this
book were produced using the Assembler/Editor cartridge from
ATARI. Chapter 6 specifies all of the changes required to use these
programs with each of the other assemblers.

COMPILERS

There is another way to convert programs to machine lan-
guage. A compiler is a program which converts a program written
in a high level language such as BASIC to machine language. These
compilers generally convert the entire program all at once, in con-
trast to an interpreter, which translates each line one at a time. The
converted program created by the compiler can then be run without
a BASIC cartridge installed, and will generally be from five to ten
times faster than the original BASIC program. Why only five to ten
times? These compilers are very complex programs, which must
take into account every possible combination of BASIC commands
anyone might write. Therefore, they create machine language code
which performs all of the correct steps in the original program, but
they cannot optimize the code produced. Therefore, in general,
programs written in assembly language and assembled into ma-
chine language will execute much faster than the same program
written in BASIC and compiled.

8 Background

The other major disadvantage of compiled code is its size. For
instance, some of the subroutines in Chapter 7 are about 100 bytes
long. The same routines written in BASIC and compiled could be
as long as 8000 bytes! It would be very hard to use these as subrou-
tines in a BASIC program as we do in Chapter 7. ‘

TERMINOLOGY

Before we go on, let’s talk about a number of terms that are
frequently used by programmers. It’s the jargon of their trade. Just
so we all are speaking the same language, then, let’s briefly review
some of them. When we speak about computer memory, we fre-
quently hear the terms ROM and RAM mentioned. ROM stands
for Read-Only Memory, and memory of this type can be read but
not written to. For instance, in the ATARI, all memory locations
higher than 49152 are ROM, and although in BASIC we can PEEK
them to see what is stored there, we cannot POKE new values into
them. “But what about player-missile graphics?” you may ask.
“We POKE memory locations higher than this all the time!”

True, but if you were to then PEEK at that location, you would
find that you hadn’t really changed anything at all. The value
stored in that location is not changed by such POKE:s. It is the act
of writing to that address which causes the changes you see in
player-missile graphics or other applications requiring writing to
memory locations above 49152.

This is in direct contrast to RAM, which stands for Random-
Access Memory. Actually, both ROM and RAM are random-ac-
cess, and RAM should more properly be called Read-Write
Memory; but since RWM is unpronounceable, RAM has become
the accepted term. The term random access refers to the method by
which information is accessed, and is to be contrasted with sequen-
tial access, the other major method of storage. Sequential access
can best be envisioned by imagining an audio tape. In order to play
a song in the middle of the tape, you must somehow scan through
the entire first portion of the tape, either by playing it or by using
the fast-forward key. In contrast, think of a phonograph record. To

