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Preface

Concavity plays a central role in mathematical economics, engineering,
management science, and optimization theory. The reason is that concavity
of functions is used as a hypothesis in most of the important theorems
concerning extremum problems. In other words, concavity is usually a
sufficient condition for satisfying the underlying assumptions of these
theorems, but concavity is definitely not a necessary condition. In fact, there
are large families of functions that are nonconcave and yet have properties
similar to those of concave functions. Such functions are called generalized
concave functions, and this book is about the various generalizations of
concavity, mainly in the context of economics and optimization.

Although hundreds of articles dealing with generalized concavity have
appeared in scientific journals, numerous textbooks have specific chapters
on this subject, and scientific meetings devoted to generalized concavity
have been held and their proceedings published, this book is the first attempt
to present generalized concavity in a unified framework. We have collected
results dealing with this subject mainly from the economics and optimization
literature, and we hope that the material presented here will be useful in
applications and will stimulate further research.

The writing of this book constituted a unique experience for the authors

“in international scientific cooperation—cooperation that extended over
many years and at times spanned three continents. It was an extremely
fruitful and enjoyable experience, which we will never forget.

We are indebted to our respective home universities—the Technion-
Israel Institute of Technology, the University of British Columbia, the
University of Alberta, and Tel Aviv University—for including the other
authors in their exchange programs and for the technical assistance we
received. Thanks are also due to the Center for Operations Research and
Econometrics, Université Catholique de Louvain, for the hospitality exten-
ded to one of the authors.
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Introduction

In this introductory chapter, we provide a brief and mostly nonmathematical
description of the contents of this book on generalized concavity. Formal
mathematical definitions of the various types of concavity may be found
in subsequent chapters.

The first question we must attempt to answer in this chapter is: why
do concave functions occupy such an important position in economics,
engineering, management science, and applied optimization theory in gen-
eral? A real-valued function of n variables defined over a convex subset of
Euclidean n-dimensional space is concave iff (if and only if) the line segment
joining any two points on the graph of the function lies on or below the
graphs; a set is convex iff, given any two points in the domain of definition
of the set, the line segment joining the two points also belongs to the set.

Returning to the question raised above, we suggest that the importance
of concave functions perhaps rests on the following two properties: (i) a
local maximizer for a concave function is also a global maximizer, and (ii)
the usual first-order necessary conditions for maximizing a differentiable
function f of n variables over an open set [i.e., x* is a point such that the
gradient vector of f vanishes so that Vf(x*) = 0] are also sufficient to imply
that x* globally maximizes f if f is a concave function defined over a convex
set. Various generalizations of concavity (studied in Chapter 3) preserve
properties (i) and (ii), respectively. In Chapter 2, we also study two classes
of functions that are more restrictive than the class of concave functions:
strictly concave and strongly concave functions. Strictly concave functions
have the following useful property, which strengthens property (i) above:
(iii) A local maximizer for a strictly concave function is also the unique
global maximizer. A function is strictly concave iff the line segment joining
any two distinct points on the graph of the function lies below the graph
of the function (with the obvious exception of the end points of the line
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segment). A function f is strongly concave iff it is equal to the sum of a
concave function and a negative definite quadratic form, ie., f(x) =
g(x) — ax"x for every x belonging to the convex domain of definition set,
where g is a concave function, @ > 0 is a positive scalar, and x"x = ZLI x2.
Strongly concave functions also have a property (iii) above, and, in addition,
in a neighborhood of a local maximizer, a strongly concave twice con-
tinuously differentiable function will have the curvature of a negative definite
quadratic form. This property is useful in proving convergence of certain
optimization algorithms, and it is also useful in enabling one to prove
comparative statics theorems in economics; see Section 4.9 in Chapter 4.

We now describe the contents of each chapter.

Chapter 2 deals with concave functions and the two classes of functions
that are stronger than concavity, namely, strictly and strongly concave
functions. The first three sections of Chapter 2 develop alternative charac-
terizations of concave functions. In addition to the definition of a concave
function, there are three additional very useful characterizations of con-
cavity: (i) the hypograph of the function (the graph of the function and
the set in (n + 1)-dimensional space lying below the graph) is a convex set;
(ii) the first-order Taylor series approximation to the function around any
point in the domain of definition lies on or above the graph of the function
(this characterization requires the existence of first-order partial derivatives
of the function); (iii) the Hessian matrix of second-order partial derivatives
of the function evaluated at each point in the domain of definition is a
negative semidefinite matrix (this characterization requires the existence of
continuous second-order partial derivatives of the function).

Section 2.3 of Chapter 2 also develops some composition rules for
concave functions; e.g., a nonnegative sum of concave functions is a concave
function or the pointwise minimum of a family of concave functions is a
concave function, and so on. Additional composition rules are developed
in Chapter 5. Section 2.3 also provides characterizations for strictly and
strongly concave functions.

Section 2.4 derives the local-global maximizer properties of concave
functions referred to earlier. As we stated before, these properties are
probably the main reason for the importance of the concavity concept in
applied optimization theory.

Section 2.5 deals with another extremely important topic from the
viewpoint of applications, namely, concave mathematical programming
problems. A concave program is a constrained maximization problem, where
(i) the objective function being maximized is a concave function; (ii) the
functions used to define equal to or greater than zero inequality constraints
are concave functions; and (iii) the functions used to define any equality
constraints are linear (or affine). If we have a concave program with
once-differentiable objective and constraint functions, then it turns out that
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certain conditions due to Karush (1939) and Kuhn and Tucker (1951)
involving the gradient vectors of the objective and constraint functions
evaluated at a point x* as well as certain (Lagrange) multipliers are sufficient
to imply that x* solves the concave programming problem; see Theorem
2.30. In addition, if a relatively mild constraint qualification condition is
satisfied, then these same Karush-Kuhn-Tucker conditions are also
necessary for x* to solve the constrained maximization problem; see
Theorem 2.29. The multipliers that appear in the Karush-Kuhn-Tucker
conditions can often be given physical or economic interpretations: the
multiplier (if unique) that corresponds to a particular constraint can be
interpreted as the incremental change in the optimized objective function
due to an incremental relaxation in the constraint. For further details and
rigorous statements of this result, see Samuelson (1947, p. 132), Armacost
and Fiacco (1974), and Diewert (1984). Another result in Section 2.5,
Theorem 2.28, shows that a concave programming problem has a solution
iff a certain Lagrangian saddle point problem (which is a maximization
problem in the primal variables and a minimization in the dual
multiplier variables) has a solution. This theorem, due originally to Uzawa
(1958) and Karlin (1959), does not involve any differentiability conditions;
some economic applications of it are pursued in the last section of
Chapter 4.

Chapter 3 deals with generalized concave functions; i.e., functions that
have some of the properties of concave functions but not all.

Section 3.1 defines the weakest class of generalized concave functions,
namely, the class of quasiconcave functions. A function (defined over a
convex subset of Euclidean n-dimensional space—throughout the book we
make this domain assumption) is quasiconcave iff the values of the function
along the line segment joining any two points in the domain of definition
of the function are equal to or greater than the minimum of the function
values at the end points of the line segment. Comparing the definition of
a quasiconcave function with the definition of a concave function, it can
be seen that a concave function is quasiconcave (but not vice versa). Recall
that concave functions played a central role in optimization theory because
of their extremum properties. Quasiconcave functions also have a useful
extremum property, namely: every strict local maximizer of a quasiconcave
function is a global maximizer (see Proposition 3.3). Quasiconcave functions
also play an important role in the generalized concave mathematical program-
ming problem (see Section 3.6), where the concave inequality constraints
that occurred in the concave programming problem of Section 2.5 become
quasiconcave inequality constraints. Finally, quasiconcave functions play
a central role in economic theory since the utility functions of consumers
and the production functions of producers are usually assumed to be
quasiconcave functions (see Chapter 4 below).
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Sections 3.1 and 3.2 provide various alternative characterizations of
quasiconcavity in a manner that is analogous to the alternative characteriz-
ations of concavity that were developed in the opening sections of Chapter
2. Three alternative characterizations of quasiconcavity are as follows: (i)
the upper level sets of the function are convex sets for each level (Definition
3.1); (ii) if the directional derivative of the function in any feasible direction
is negative, then function values in that direction must be less than the
value of the function evaluated at the initial point (this is the contrapositive
to Theorem 3.11); and (iii) the Hessian matrix of second-order partial
derivatives of the function evaluated at each point in the domain of definition
is negative semidefinite in the subspace orthogonal to the gradient vector
of the function evaluated at the same point in the domain of definition
(Corollary 3.20). Characterization (ii) above requires once differentiability
of the function, while characterization (iii) requires twice continuous
differentiability over an open convex set and the existence of a nonzero
gradient vector at each point in the domain of definition. The restriction
that the gradient vector be nonzero can be dropped (see Theorem 3.22),
but the resulting theorem requires an additional concept that probably will
not be familiar, namely, the concept of a semistrict local minimum, explained
in Definition 3.3. This concept is also needed to provide a characterization
of semistrictly quasiconcave functions in the twice-differentiable case; see
Theorem 3.22. On the other hand, the familiar concept of a local minimum
is used to provide a characterization of strictly quasiconcave functions in
the twice-differentiable case; see Theorem 3.26. In fact, all of the different
types of generalized concave functions can be characterized by their local
minimum or maximum behavior along line segments; see Diewert, Avriel,
and Zang (1981) for the details.

Section 3.4 deals with the properties and uses of the class of semistrictly
quasiconcave functions. A function is semistrictly quasiconcave iff for every
two points in the domain of definition such that the function has unequal
values at those two points, then the value of the function along the interior
of the line segment joining the two points is greater than the minimum of
the two end-point function values; see Definition 3.11. If the function is
continuous (or merely upper semicontinuous so that its upper level sets are
closed), then a semistrictly quasiconcave function is also quasiconcave
(Proposition 3.30). It is easy to verify that a concave function is also
semistrictly quasiconcave. Hence, in the continuous (or upper semicon-
tinuous) case, the class of semistrictly quasiconcave functions lies between
the concave and quasiconcave classes. An alternative characterization of
the concept of semistrict quasiconcavity for continuous functions in terms
of level set properties is given by Proposition 3.35: the family of upper level
sets must be convex and each nonmaximal level set must be contained in
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the boundary of the corresponding upper level set (a maximal level set
obviously must coincide with the corresponding upper level set). Semistrictly
quasiconcave functions have the same extremum property that concave
functions had, namely: any local maximizer for a semistrictly quasiconcave
function is a global maximizer (Theorem 3.37). Semistrictly quasiconcave
functions also play a role in consumer theory; see Section 4.5.

A more restrictive form of generalized concavity than semistrict
quasiconcavity is strict quasiconcavity, discussed in Section 3.3 A function
is strictly quasiconcave iff for every two distinct points in the domain of
definition of the function the value of the function along the interior of the
line segment joining the two points is greater than the minimum of the two
end-point function values; see Definition 3.8. It is easy to verify that a
strictly concave function is strictly quasiconcave and that a strictly quasicon-
cave function is semistrictly quasiconcave and quasiconcave. Strictly
quasiconcave functions have the same extremely useful extremum property
that strictly concave functions had: any local maximum is the unique global
maximum. Strictly quasiconcave functions also play an important role in
economics; see Section 4.6. Continuous strictly quasiconcave functions have
strictly convex upper level sets (Proposition 3.28).

Section 3.5 deals with three new classes of generalized concave func-
tions: (i) pseudoconcave, (ii) strictly pseudoconcave, and (iii) strongly
pseudoconcave. These classes of functions are generalizations of the class
of concave, strictly concave, and strongly concave functions, respectively.
The three new classes of functions are usually defined only in the differenti-
able case (although nondifferentiable definitions exist in the literature and
are referred to in the text).

A pseudoconcave function may be defined by the following property
(the contrapositive to Definition 3.13): if the directional derivative of the
function in any feasible direction is nonpositive, then function values in
that direction must be less than or equal to the value of the function evaluated
at the initial point. Pseudoconcave functions have the same important
extremum property that concave functions had: if the gradient vector of a
function is zero at a point, then that point is a global maximizer for the
function {Theorem 3.39). A characterization of pseudoconcave functions
in the twice continuously differentiable case is provided by Theorem 3.43.

A strictly pseudoconcave function may be defined by the following
property (the contrapositive to Definition 3.13): if the directional derivative
of the function in any feasible direction is nonpositive, then the function
values in that direction must be less than the value of the function evaluated
at the initial point. Strictly pseudoconcave functions have the same impor-
tant extremum property that strictly concave functions had: if the gradient
vector of a function is zero at a point, then that point is the unique global
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maximizer for the function (Theorem 3.39). A characterization of strictly
pseudoconcave functions in the twice continuously differentiable case is
provided by Theorem 3.43.

Strongly pseudoconcave functions are strictly pseudoconcave functions
with the following additional property: if the directional derivative of the
function in any feasible direction is zero, then the function diminishes
(locally at least) at a quadratic rate in that direction. Recall that in the twice
differentiable case, a strongly concave function could be characterized by
having a negative definite Hessian matrix of second-order partial derivatives
at each point in its domain of definition. In the twice differentiable case, a
function is strongly pseudoconcave iff its Hessian matrix is negative definite
in the subspace orthogonal to the gradient vector at each point in the domain
of definition (Proposition 3.45). The property of strong pseudoconcavity is
sometimes called strong quasiconcavity in the economics literature, and
some economic applications of this concept are developed in Section 4.7.

It should be noted that all of our concavity and quasiconcavity concepts
have convex and quasiconvex counterparts: a function f'is convex (quasicon-
vex) iff —f is concave (quasiconcave).

Chapter 3 is concluded by Section 3.6, which deals with generalizations
of the concave programs studied in Section 2.5. An example shows that the
Karlin-Uzawa Saddle Point Theorem for (not necessarily differentiable)
concave programming problems cannot be readily generalized. However,
for differentiable programs, the sufficiency of the Karush-Kuhn-Tucker
conditions for concave problems can be generalized to programming prob-
lems involving objective and constraint functions that satisfy some type of
generalized concavity property: Theorem 3.48 shows that the objective
function need only be pseudoconcave, the equal to or greater than inequality
constraint functions need only be quasiconcave, and the equality constraint
functions need only be quasimonotonic. A function is quasimonotonic iff it
is both quasiconcave and quasiconvex (inequality 3.35). Thus these
pseudoconcavity, quasiconcavity, and quasimonotonic properties replace
the earlier concavity and linearity properties that occurred in Theorem 2.30.

Chapter 4 deals with economic applications. We consider four models
of economic behavior: (i) a producer’s cost minimization problem, (ii) a
consumer’s utility maximization problem, (iii) a producer’s profit maximiz-
ation problem, and (iv) a model of national product maximization for an
economy that faces world prices for the outputs it produces and is con-
strained by domestic resource availabilities. In the context of the above
four models, we show how each of the types of generalized concavity studied
in Chapters 2 and 3 arises in a natural way.

Chapter 4 also proves some economics duality theorems. Many problems
in economics involve maximizing or minimizing a function subject to another
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functional constraint. If either the objective function or the constraint
function is linear (or affine), then the optimized objective function may be
regarded as a function of the parameters or coefficients (these are usually
prices) of the linear function involved in the primal optimization problem.
This optimized objective function, regarded as a function of the prices
appearing in the primal problem, is called the dual function. Under certain
conditions, this dual function may be used to reconstruct the nonlinear
function that appeared in the primal optimization problem. The regularity
conditions always involve some kind of generalized concavity restrictions
on the nonlinear primal function. Some applications of these economics
duality theorems are provided in Chapter 4.

Chapters 5 and 6 deal with the following important question: how can
we recognize whether a given function has a generalized concavity property?

In the first part of Chapter 5, composition rules for the various types
of generalized concave functions are derived. Suppose we know that certain
functions have a generalized concavity property (or are even concave). Then
under what conditions will an increasing or decreasing function of the
original function or functions have a generalized concavity property?

In the second part of Chapter 5, we apply these composition rules to
derive conditions under which a product or ratio of two or more functions
has a generalized concavity property, provided that the original functions
are concave or convex. Special attention is given to the case of products
and ratios of only two functions. The material in this chapter draws heavily
on the work of Schaible (1971, 1972).

Chapter 6 deals with the generalized concavity properties of an impor-
tant class of functions, namely, the class of quadratic functions. It turns
out that restricting ourselves to the class of quadratic functions simplifies
life somewhat: quasiconcave and semistrictly quasiconcave quadratic func-
tions cannot be distinguished. Furthermore, strictly and strongly pseudocon-
cave quadratic functions cannot be distinguished. However, even with these
simplifications, the characterization of the generalized concavity properties
of quadratic functions proves to be a rather complex task. Chapter 6 develops
all known results using a unified framework (based on the composite
function criteria developed in Chapter 5) on the generalized concavity
properties of quadratic functions. Furthermore, many of the criteria are
expressed in alternative ways using eigenvalues and eigenvectors or deter-
minantal conditions. The material in this chapter summarizes and extends
the work of Schaible (1981a, b).

Chapter 7 provides a brief survey of fractional programming and indi-
cates how generalized concavity concepts play a role in this important
applied area. A fractional program is a constrained maximization problem
where the objective function is a ratio of two functions, say f(x)/g(x), and
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the decision variables x are restricted to belong to a closed convex set S in
finite-dimensional Euclidean space. In a linear fractional program, the func-
tions f and g are both restricted to be linear or affine. In a concave fractional
program, the numerator function f is restricted to be nonnegative and
concave and the denominator function is restricted to be convex and positive
over the constraint set S. In a generalized fractional program, we maximize
a sum of ratios or we maximize the minimum of a finite number of ratios.

In Section 7.1, we show that the objective function in a concave
fractional programming problem is semistrictly concave. Hence, a local
maximum for the problem is a global maximum. If, in addition, the objective
function in a concave fractional program is differentiable, we show that the
objective function is pseudoconcave. In this latter case, the Karush-Kuhn-
Tucker conditions are sufficient (and necessary if a constraint qualification
condition is satisfied) to characterize the solution to the fractional program-
ming problem.

Section 7.2 surveys a number of applications of fractional programming.

Business and economics applications of fractional programming
include the following:

1. Maximization of productivity. The productivity of a firm, enterprise,
or economy is usually defined as a function of outputs produced
divided by a function of the inputs utilized by the firm.

2. Maximization of the rate of return on investments.

Minimization of cost per unit of time.

4. Maximization of an economy’s growth rate. This problem originates
in von Neumann’s (1945) model of an expanding economy. The
overall growth rate in the economy is the smallest of certain sectoral
growth rates. Maximizing the minimum of the sectoral growth rates
leads to a generalized fractional programming problem.

5. Portfolio selection problems in finance. Here we attempt to maximize
the expected return of a portfolio of investments divided by the risk
of the portfolio.

W

Applied mathematics applications of fractional programming include
the following:

1. Finding the maximal eigenvalue. The maximal eigenvalue A of a
symmetric matrix A can be found by maximizing the ratio of two
quadratic forms, i.e., A = max, {x"Ax/x"x: x # 0}.

2. Approximation theory. Some problems in numerical approximation
theory generate generalized fractional programs.

3. Solution of large-scale linear programs. Using decomposition
methods, the solution to a large linear program can be reduced to
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the solution of a finite number of subproblems. These subproblems
are linear fractional programs.

4. Solving stochastic programs. Certain stochastic linear programming
problems lead to fractional programming problems. This class of
applications includes the portfolio selection problem mentioned
above.

The above applications of fractional programming (and additional
ones) are discussed in Section 7.2 and references to the literature are
provided there.

In Section 7.3, we indicate how a concave fractional program may be
transformed into a family of ordinary concave programs using a separation
of variable technique. However, an even more convenient transformation
is available. Propositions 7.2 and 7.3 show how concave fractional programs
can be transformed into ordinary concave programs using a certain change
of variables transformation. We also derive the (saddle point) dual program-
ming problems for a concave fractional program in this section.

Section 7.4 concludes Chapter 7 by outlining some possible algorithmic
approaches to the solution of concave fractional programs.

The material in Chapter 7 draws heavily on Schaible (1978, 1981c).

Chapter 8 introduces two new classes of generalized concave functions:
transconcave functions and (h, ¢)-concave functions.

A function f defined over a convex subset C of Euclidean n-
dimensional space is iransconcave (or G-concave) iff it can be transformed
into a concave function by means of a monotonically increasing function
of one variable G; hence f is G-concave iff h(x) = G[f(x)] is a concave
function over C.

Transconcave functions are used in at least two important areas of
application. The first use is in numerical algorithms for maximizing functions
of n variables; if the objective function f in the nonlinear programming
problem can be transformed into a concave function G[f(x)] by means of
an increasing function of one variable G, then the original objective function
f(x) may be replaced by the concave objective function G[ f(x)] and one
of many concave programming algorithms may be used to solve the problem.
A second use is in the computation of general equilibria in economic models
where the number of consumers in the model is smaller than the number
of commodities. In order to compute a general equilibrium (see Debreu,
1959, for a formal definition and references to the literature), an algorithm
is required that will compute a fixed point under the hypotheses of the
Kakutani (1941) Fixed Point theorem. Scarf (1967) has constructed such
an algorithm, but it is not efficient if the number of commodities exceeds
50. However, if the preferences of all consumers in the general equilibrium



