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Preface

This book started as a set of informal notes on Brakke’s regularity theory for
mean curvature flow ([B]). These notes focussed on the special case where
smooth solutions of mean curvature flow develop singularities for the first
time, thus expressing the underlying ideas almost entirely in the language of
differential geometry and partial differential equations. In particular, notation
from geometric measure theory was kept to a minimum.

After 1 gave lectures on Brakke’s work during 1994 in the Mathematics
Departments at Stanford University and the University of Tiibingen and at a
workshop on Motion by Mean Curvature in Trento, I was encouraged by a
number of colleagues to publish my notes.

Since that time, but particularly since 1978, when Brakke’s work first
appeared, there have been many new developments in mean curvature flow
starting with Huisken’s work in 1984 ([Hul]). Some of these have resulted in
significant simplifications of Brakke’s original arguments as well as improve-
ments of his results in special situations. This includes particularly the case
of evolving hypersurfaces with positive mean curvature. Remarkably though,
in the general case the estimate of the singular set provided in Brakke’s main
regularity theorem ([B], Theorem 6.12) has not been improved upon to date.

The bulk of the material in this text is based on lectures I gave in the De-
partment of Mathematics at the Universitit Freiburg, Germany, from Novem-
ber 2000 to February 2001 and at Monash University, Melbourne, Australia
during the first half of 2001.

The central theme is the regularity theory for mean curvature flow leading
up to a proof of Brakke’s main regularity theorem ([B], Theorem 6.12) for
the special case where smooth solutions develop singularities. In this self-
contained presentation, I have replaced many of Brakke’s original techniques
by more recent methods wherever this led to a clear simplification of his
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arguments. Some of his original ideas, in only slightly modified form, have
been included in an appendix.

Under additional assumptions such as symmetry conditions or dimen-
sional restrictions on the solution or sign conditions on the mean curvature,
improved estimates for the dimension of the singular set or refined descrip-
tions of the behaviour of the solution near singularities can be established.
I have, however, decided not to include a treatment of such results in this
presentation. In particular, the book does not cover the following important
contributions: Altschuler, Angenent and Giga’s work on isolated singularities
of surfaces of revolution ([AAG]), Angenent and Velazquez’s construction
of solutions exhibiting degenerate neckpinches ([AV]), Hamilton’s influen-
tial Harnack inequality for convex solutions ([Ha4]), Huisken’s classification
of self-similar solutions with nonnegative mean curvature ((Hu3]), Huisken
and Sinestrari’s and White’s asymptotic description of singularities in the
mean convex case ([HS1], [W4]), Ilmanen’s results on smooth blow-ups in
two dimensions ([I1], [I2]) as well as White’s dimension reduction argument
(IW1]). The latter works without additional assumptions on the solution but
so far implies improved (and optimal) estimates for the singular set only in
the mean convex case ([W1], [W2], [W4]).

I also have chosen not to include important alternative approaches to mean
curvature flow such as the level-set approach adopted by Evans and Spruck
([ES1}-[ES3]) and by Chen, Giga and Goto ([CGG], [GG1], [GG2]) as well
as the work of Ilmanen ([I1]) which establishes a link between level-set flow
and Brakke’s varifold solution framework.

This project was supported by the Universitit Freiburg, Monash Univer-
sity and the Australian Research Council. A shorter version of this exposition,
which appeared in the preprint series of the Mathematics Department of the
Universitit Freiburg, was completed while I visited Gerhard Huisken at the
Albert Einstein Institute in Golm in 2002. I would particularly like to thank
Ernst Kuwert for the invitation to give these lectures and all my colleagues in
the Mathematics Department at the Universitét Freiburg for their hospitality.

I would like to thank Vadim Goutkovitch, Tim Hunt, Burkard Polster and
particularly Kashif Rasul for advice and help in producing electronic versions
of my hand sketches. Kashif also created the image of the catenoidal surface
in Chapter 5 using Mathematica. Special thanks to Ann Bjorner who did a
wonderful job of re-drawing all my handsketches using Adobe Illustrator and
in particular produced the front cover image.

Thanks to Maria Athanassenas, Mark Aarons, Josh Bode, Kashif Rasul



Preface X1

and Felix Schulze who pointed out several typographical and other errors and
made valuable suggestions regarding the exposition.

I am indebted to my colleague Marty Ross who took the time to thor-
oughly read an earlier version of Chapter 2 and provided invaluable com-
ments and advice on the general layout of this book.

I am particularly grateful to Craig Evans for encouraging me to publish
my notes, continually urging me to complete this project and for his support
throughout the production of this book.
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Chapter 1

Introduction

Mean curvature flow evolves hypersurfaces in their normal direction with
speed equal to the mean curvature at each point. It is the steepest descent
flow for the area functional. In particular, minimal (zero mean curvature)
hypersurfaces are stationary solutions.

Analytically, this process is described by a weakly parabolic system of
partial differential equations for the local embedding map of the evolving
hypersurfaces. At the curvature level it looks like a reaction-diffusion sys-
tem. The reaction part, which is cubic in the curvatures, generally forces
the formation of singularities (points near which the curvature blows up) in
finite time. The diffusion part, involving the Laplace-Beltrami operator of
the moving hypersurface, effects an infinitesimal separation of variables near
the singularity. This means that the solution asymptotically moves by scaling
or a rigid motion, with geometric shape determined by an elliptic system of
partial differential equations.

Mean curvature flow is related to Hamilton’s Ricci flow for metrics in
many geometric and analytic aspects. The Ricci flow programme was devel-
oped by Hamilton with the aim of settling Thurston’s geometrisation conjec-
ture on the classification of all closed 3-manifolds (see [Ch] for a survey of
Hamilton’s work). The basic idea is to start with an arbitrary initial metric on
such a manifold and canonically alter it using a combination of Ricci flow de-
formation and controlled topological surgery. Here, a careful analysis of the
reaction-diffusion system satisfied by the curvature operator of the evolving
metric plays a crucial role. Within this programme, there has recently been
major progress by Perelman ([P1], [P2]). For mean curvature flow, applica-
tions to the classification of hypersurfaces with positive scalar curvature in
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four-dimensional Euclidean space were established in the work of Huisken
and Sinestrari ([HS 1]-[HS3]).

The label regularity theory generally refers to results regarding the set of
singular times, the dimension and structure of the singular set at those times
as well as the asymptotic behaviour of solutions near singularities.

Regularity results are established, for instance, by identifying scale in-
variant integral quantities which use up a certain portion of some appropriate
total energy of the system (area in this case) at each singular point. By means
of these scale invariant quantities one also proves the existence of asymp-
totic limits of solutions obtained by rescaling the original solution ever more
closely about a singular point. Such rescaling limits turn out to be self-similar,
that is, invariant under further scaling. Moreover, these limiting solutions
need not be smooth so usually have to be described in the language of geo-
metric measure theory.

In a subsequent step, one aims to classify all self-similar solutions of mean
curvature flow as these describe the possible geometric shapes of the original
solution near the singularity. One then linearises this solution about a self-
similar limit and studies the spectrum of the linearised operator.

The goal of this analysis is a complete asymptotic description of the solu-
tion near the singularity, hopefully leading to a canonical way of continuing
it beyond the singular time. It may also provide analytic insights for related
nonlinear evolution equations such as reaction-diffusion equations, the har-
monic map heat flow and the Ricci flow of metrics.

In this book we concentrate on the modest goal of estimating the size
of the singular set and proving convergence of rescaled solutions to a self-
similar one. The approach is analogous to the regularity theory for minimal
hypersurfaces, where one now has an optimal estimate for the dimension of
the singular set (see [S1] for a survey of the field) but to date no complete
description of the structure of the singular set ([S2]).

In 1978, Brakke studied mean curvature flow in the framework of singu-
lar surfaces, so-called integral varifolds ([B]). In the special case where one
considers smooth hypersurfaces which develop singularities for the first time,
Brakke's main regularity theorem states that under certain additional assump-
tions (area continuity and unit density hypothesis) the hypersurfaces are still
smooth at the singular time except for a lower dimensional set.

It is unclear whether Brakke’s additional assumptions are automatically
satisfied as a consequence of information about the initial hypersurface. In the
special case where the evolving hypersurfaces have positive mean curvature



1. Introduction 3

(which holds automatically by the maximum principle if it does for the initial
hypersurface) it follows from work of White ({W1], [W2] and [W4]) that
the maximum dimension of the singular set is 1 below the dimension of the
hypersurface. This result is optimal in view of the behaviour of some special
solutions discussed in Chapter 2.

There are also other approaches to mean curvature flow with correspond-
ing regularity theories, notably the level-set flow covered in ([ES1]-[ES3])
and ([CGG], [GG1],[GG2]). The regularity results within these frameworks
are comparable to the one in Brakke’s setting only to a limited extent (see
[I1]). In particular, Brakke’s original result, though not generally considered
optimal, has not been improved upon to date except in special situations.

This book is structured as follows: Chapter 2 grew out of survey talks on
mean curvature flow and is therefore of an expository nature. It introduces
the concept of mean curvature flow and illustrates several important exam-
ples and special solutions. Homothetic solutions, which play a central role in
the regularity theory, are covered in significant detail. We also state several
global results which describe long-term existence and asymptotic behaviour
in special situations. In the cases of convex initial data ((GH] and [Hul]) and
of embedded curves ([Grl]), no singularities form before the solution disap-
pears. Entire graph solutions never develop singularities ([EH1], [EH2]).

In Chapter 3, we derive local point-wise estimates on geometric quantities
for smooth hypersurfaces moving by mean curvatures. Most of this material
appeared in [EH2] and [Ecl], but the presentation of the interior estimates
from [EH2] has been streamlined here. We first establish control on the posi-
tion vector of the moving surfaces. This leads in particular to conditions on
an initial hypersurface that guarantee the formation of singularities before the
solution disappears. We continue by proving local gradient estimates. Instead
of then using standard techniques for uniformly parabolic equations to obtain
higher derivative estimates, we establish local bounds for the curvature and
its derivatives directly from the evolution equations of these quantities and
the weak maximum principle. This is technically easier and has the addi-
tional advantage of making the geometric dependence of the constants more
explicit, as well as improving them.

In Chapter 4, we study the behaviour of integral quantities, starting with
an integrated version of mean curvature flow (see Proposition 4.4), which
also serves as the basis for Brakke’s weak solution concept. The main result
is Huisken’s monotonicity formula (Theorem 4.11), first proved in [Hu2], for
which we derive a new localised version (Proposition 4.17). Consequences of
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these include upper and lower bounds on the area ratio inside balls (the latter
implying a version of Brakke’s clearing out lemma ([B], Theorem 6.3)), as
well as local mean value inequalities. Further, we explain how homothetically
shrinking solutions arise as limits of rescaled solutions. Although all results
are formulated in the smooth case, most of the proofs given here are easily
adapted to Brakke solutions. This chapter draws heavily on ideas from [B],
[I1], (12], [W1] and [Ec1], [Ec2].

Chapter 5 contains the actual regularity theory. After introducing a num-
ber of concepts from geometric measure theory, we state Brakke’s main regu-
larity theorem (Theorem 5.3) and discuss the central hypothesis of his result.
In particular, we refer to more recent developments where Brakke’s theorem
has been improved in special situations ([W1], [W2], [I1], [I12]). For other
solution frameworks such as the level-set flow and its relation to Brakke flow
we refer to [ES1]-[ES3], [CGG], [GG1], [GG2] and [I1]. The technical part
of this chapter begins with two local regularity results (Theorems 5.6 and
5.7). The first version is due to White and uses the monotonicity formula as
the essential tool. The second version is a new result. It employs a form of
L?-height deviation from a hyperplane and is closer in spirit to Brakke’s local
regularity theorem in [B], Theorem 6.11. The proof of Theorem 5.3 given
here is quite different from Brakke’s original one. In order to streamline the
exposition, we have split the argument into a string of smaller components
(following Lemma 5.10). Chapters 4 and 5 contain a number of ideas and
results which have not appeared elsewhere in this form. However, the bulk of
the material has been adapted from work in [B], [W3] and [Ec1], [Ec2].

For the convenience of the reader we have added an appendix: The first
three parts (Appendices A—C) list in more detail the definitions and facts for
hypersurfaces in Euclidean space used throughout the text, give a derivation
of the basic evolution equations for mean curvature flow and provide some
background on the quite limited amount of geometric measure theory used
throughout the book.

The remaining parts (Appendices D-F) present material which is related
to but not essential for the main part of the book: Brakke’s main regularity
theorem ([B], Theorem 6.12) may be regarded as an analogue of Allard’s
and de Giorgi’s regularity theorem for stationary varifolds with multiplicity 1
almost everywhere ([All], [S1], [DG]). In fact, many ideas from minimal sur-
face theory can be adapted to mean curvature flow. Appendix D provides an
account of various fundamental techniques in minimal surface theory such as
monotonicity and mean value formulas (all in the setting of smooth hypersur-
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faces) as well as minimal surface versions of the regularity proofs in Chapter
5. These should be slightly easier to read than the relevant proofs for mean
curvature flow but convey the central ideas all the same. We therefore recom-
mend reading this chapter before Chapter 5. For related material we refer to
the book by Colding and Minicozzi ([CM]).

Appendix E gives a proof of a stronger version of Brakke’s clearing out
lemma than the one we use in our proof of his main regularity Theorem 5.3.
This proof is closer to Brakke’s original one in that it employs some version
of the isoperimetric inequality. To simplify the exposition, we have restricted
ourselves to the two-dimensional case.

Appendix F gives the derivation of a new local monotonicity formula due
to the author ([Ec3]) which is analogous to the monotonicity formula for min-
imal hypersurfaces. In particular, in this formula, space and time are com-
bined in a geometrically natural fashion, reminiscent of the recent work of
Perelman for Ricci flow ([P1]). This formula provides an alternative to the
localised version of Huisken’s monotonicity formula in Proposition 4.17 on
which much of the proof of Brakke’s theorem in Chapter 5 is based.






Chapter 2

Special Solutions and
Global Behaviour

Definition 2.1 (Mean Curvature Flow) A family of smoothly embedded
hypersurfaces (M;);e; in R*+! moves by mean curvature if

X i @1

— = H(x .
ot

forx € M, andt € I, I C R an open interval. Here H (x) is the mean

curvature vector at x € M,.

Remark 2.2 (1) Family of Embeddings. Consider the family of smooth em-
beddings F; = F(-,t) : M* - R"* with M, = F,(M") where M" is an
n-dimensional manifold. Setting x = F(p, t), (2.1) is then interpreted as

oF -
E(P, )= H(F(p,t)) (2.2)

forp e M"andt € I.
(2) A Nonlinear Heat Equation. We use the convention

-

=-—-Hv

where v is a choice of unit normal field and H is the mean curvature of M,
(see Appendix A for a definition). In view of the identity

AM)C:FI

!
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involving the Laplace-Beltrami operator on M; (see (A.1)) (2.1) can also be
expressed in the form

— = A 2.3
57 M (2.3)

which formally resembles the heat equation.

(3) Normal Motion and Tangential Diffeomorphisms. We will often consider
smoothly embedded hypersurfaces M, satisfying

0x 1 I_-i( )

JEE— — X

ot
(L denotes the projection onto the normal space of M,). This equatign is
equivalent to (2.1) up to diffeomorphisms tangent to M,. Indeed, let F; =

F(,t): M" > R**! with M, = F,(M") be a family of embeddings satisfy-
ing the equation

. n
oF -~
(Ft_(q’t)) = H(F(q,1))

for g € M" (here L denotes the projection onto the normal space of F,(M™)).
Let ¢, = ¢ (-, t) be a family of diffeomorphisms of M”" satisfying

~ T
- 0 aF
D, F(¢(p,1),1) (a_f(p’ t)> = - <3t—(¢>(p, 1, t))

(here the superscript T denotes projection onto the tangent space of F,(M™)).
The local existence of such a family is guaranteed by the assumptions on
F. If we set

F,(p) = F(p,t) = F@(p, 1), 1) = F(@:(p), 1) (2.4)

then M, = F,(M™) = F,(M"™), and one easily checks that

aF( t) = H(F(p,t
57 P = (F(p, 1)).

Two natural examples will be given below.

(4) Minimal Hypersurfaces. Setting M, = M for all t € R where M C R**!
is a minimal (H = 0) hypersurface gives a solution of (2.1). These arise as
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stationary limits in the case of complete M or in boundary value problems.
We shall see later that (2.1) decreases the area element (and thus decreases
the area of compact hypersurfaces). It is the steepest descent flow (gradient
flow) for the area functional.

Examples 2.3 (1) Spheres. Let (M,) be a family of concentric n-spheres in

[ .
R+ e,

_ n+1
=3B -

By the invariance of mean curvature under isometries of R+, (2.1) reduces
to an ordinary differential equation for the radius function r(¢) given by

n
F=——

r

If we require r(0) = p, that is, My = 3B, then

r(t) =/ p?—2nt

so that this solution of (2.1) exists for t € (=00, p2/2n).

r(t
. @ -
N

to = 2/271

Figure 2.1: Shrinking sphere

(2) Cylinders. If M, is a spherical cylinder, i.e.,

M, =3B} x R*

for 0 < k < n (this includes the previous example when k = 0), then

(n — k)
r

so that with r(0) = p we obtain

r(t) =+/p% -2 — k)t
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Figure 2.2: Shrinking cylinder

and the solution exists for f € (—00, p?/2(n — k)).
(3) Circular Torus. Let My C R3 be the circular torus defined as the set of
points at distance p from a unit circle. For p < 1/2, the mean curvature of
My is positive.

Let 2, be the region enclosed by M,. Since H > 0 throughout the evolu-
tion (in fact, by the maximum principle stated in Chapter 3, the minimum of
H on M, is an increasing function of ) we have Q, C Q; forz > s.

M, to=7?

Figure 2.3: Torus contracting to a circle

It is easily checked that the evolving torus will not maintain its circular cross-
section but it will remain a surface of revolution. It takes a little more thought
to see that it collapses onto a circle in finite time.

(4) Homothetic Solutions. The simplest example of a homothetic solution of
(2.1) is given by the shrinking spheres discussed in (1). For p = 1, these
satisfy

for all t € (—o0, 1/2n). More generally (following [B], Appendix C), we
consider solutions of (2.1) of the form

M, = A1) M, (2.5)



