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Preface

The aim of these notes is to present a comprehensive treatment of the so-called
blocking technique, together with applications to the study of sequence and
function spaces, to the study of operators between such spaces, and to classical
inequalities.

In these theories, and in other parts of Analysis, expressions of the form

()T

play an important role, most prominently perhaps in connection with Hardy’s
inequality. The analysis of such an expression, which we shall briefly call a norm
in section form, has turned out to be demanding.

In many cases a problem becomes more accessible under a suitable renorming.

Now, throughout the last four decades expressions of the form

Slr(g )]

kel,
have been appearing quite naturally in various parts of Analysis, very often in

connection with coefficient conditions on series expansions of functions. Here,
the I, form a partition of N into disjoint intervals, the most common partition
being that into the dyadic blocks [2¥,2“*!). An expression of the above type is
called a norm in block form.

It has already been noted by several authors that certain norms in section
form can be replaced equivalently by a norm in block form. Such a renorming,
which is referred to as the blocking technique, is of great practical value, for the
analysis of norms in block form is much simpler: in many respects they behave
just like the familiar {P-norms.

In these notes we show that, apart from some trivial cases, in fact every
norm in section form can be transformed into block form and, what is perhaps
even more surprising, every norm in block form can be re-translated into section
form. In that sense the blocking technique is universal. Chapter I provides
a dictionary of transformations between the two kinds of norms. The related

problem of characterising when two given norms are equivalent is of less relevance
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to the applications in these notes and is treated in the Appendix. In Chapter
II we apply the blocking technique to study the structure of sequence spaces
defined by norms in section form, while Chapter III contains applications to
(generalised) weighted mean operators in [P and to the weighted inequalities of
Hardy and Copson.

It is more a matter of personal taste that we have chosen to concentrate our
study on norms for sequences rather than on the corresponding integral norms
for functions on the real line. In Chapter IV we indicate the integral analogues
of our results.

Our research originated from a study of four papers by G. Bennett that
revolve around the inequalities of Hardy and Copson. We have developed the
blocking technique as a tool to attack some of his open problems. This has been
successful; the solutions to three of his problems are contained in Sections 9, 10
and 17.

On the other hand, the results in Bennett’s papers were instrumental in
leading us to the appropriate transformations between section norms and block
norms. Thus it is in two ways that these notes owe their existence to Grahame
Bennett. I would therefore like to take this opportunity to express my sincere
gratitude to him and my deep appreciation of the beauty of his work.

Hagen, October 1997 Karl-Goswin Grosse-Erdmann
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Introduction

In four fundamental papers G. Bennett [12, 13, 14, 15] has undertaken a thor-
ough investigation of the inequalities of Hardy and Copson and their weighted
generalisations. Among other things he has completely solved the [P-mapping
problem for weighted mean matrices and, in [15], has introduced the new con-
cept of factorisation of inequalities. This concept, for instance, allows Hardy’s
classical inequality to be seen in a new light, 75 years after its first appearance.
Bennett has also formulated various open problems that were raised by his work.
A new approach, the so-called blocking technique, has enabled us to solve three
of his problems, and it turned out that this technique also serves to obtain a
large part of Bennett’s results in an elementary and unified way, as far as its
qualitative aspect 1s concerned (we shall say more about this point below).

Since our investigation revolves around Bennett’s four papers we shall refer
to them throughout briefly as BI, BII, BIII and BIV. By means of Hardy’s
inequality we shall next illustrate what we mean by the blocking technique and
how it comes into play.

Hardy’s inequality

This inequality, in its discrete form, asserts that for any p > 1 there is some
constant K > 0 such that

n

N 1 P N
o.1) 5 (;sz> <KY s
n=1 k n=1

=1



2 Introduction

holds for every N € N and all non-negative numbers z;,...,zn. Letting N — oo
we see that this immediately implies the inclusion

(0.2) IP C ces(p)

between the space I? of p-summable (real or complex) sequences and the so-called
Cesdro sequence space

ces(p) = {z = (z) : ‘;(% g |.1:k|)p < oo}.

As a matter of fact, the inclusion (0.2) is the form in which Hardy [36] first
announced his result. Since ces(p) is a Banach space under the norm

1/p

03) ety = <2(§;||)p> ,

an application of the closed graph theorem shows that (0.2) implies (0.1) so that
the two are in fact equivalent.

The norm of ces(p), although at first sight a rather straightforward variation
of the IP-norm, defies simple analysis. This is seen most clearly in a result of A.
A. Jagers [44]. Answering a prijsvraag of the Dutch Mathematical Society [101],
Jagers determined the dual of ces(p) under its dual norm; it turned out to be
more complicated than one would expect. One of Bennett’s numerous surprising
results is that in fact

(0.4) ces(p)* = {z : Esup lzx|P” < oo} ;

n k2n
where p* is the conjugate exponent to p (BIV, 12.17). The price one has to pay
for this simple representation is that the norm on ces(p)* implied by it is not
the dual norm. Bennett rests the proof of (0.4) on a renorming of the Cesaro
sequence space, the new norm being suggested by a factorisation result.

The main idea of these notes is to renorm ces(p) in another direction. What
makes the analysis under (0.3) difficult is the fact that each term of the sequence
x appears in almost every expression ;1'_ > %=1 |zk|. It would considerably simplify
matters if this norm could be replaced by one in which each z; only appeared
once. This is indeed possible; we shall show that an equivalent norm on ces(p)

is given by
1/p

o0 2"'“—1 P
(0.5) ]| = 22"“*”(2 |xk|) |

v=0 k=2v
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and that ces(p) consists of all sequences z for which this new (extended) norm

is finite, see Theorem 4.1. Since we can write

oo ,2vtiog p/p p
Izt = (S 3 laak) ,
v=0 k=2v

a simple application of Holder’s inequality shows that (0.2) holds. We have thus
obtained a new proof of Hardy’s inequality.

The spaces (p, q)

We shall say that a norm like (0.5) is in block form, while (0.3) is in section form.
In 1969, Hedlund [41] introduced the mixed norm spaces

S I S | q/p
i(p,q) = m:Z( > mlp) <oy,
v=0 k=2v

see also Kellogg [51]. In many respects these spaces behave just like the familiar
IP-spaces. What we have found is that the Cesaro sequence space ces(p) is a
weighted I(1,p)-space. This also helps to locate the place of ces(p) within the
collection of classical and semi-classical Banach sequence spaces (cf. BIV, p.
7). We remark that the Besov sequence spaces bf ; introduced by Pietsch (82]
in 1980 are weighted I(p, ¢)-spaces with, in particular, bg.q =(p, q).

The blocking technique: scope and limitations

The blocking technique consists in replacing norms in section form by norms
in block form and vice versa. In our applications of this technique the réle of
the norms in block form is that of a catalyst. We start off with problems that
are formulated in terms of section norms, translate these into block form, solve
the new and usually much simpler problems, and re-translate the solution into
section form. Thus, for example, questions on spaces like ces(p) are reduced to
questions on [(p, g)-spaces. The main difficulty in this programme consists in
finding a suitably large number of transformations between section and block
form that is flexible enough for differing purposes.

We shall see that our approach not only provides a new proof of Hardy’s
inequality (and of the related inequality of Copson, compare Section 10), but
that its scope is much wider. Among other things it enables us to treat these
inequalities in their weighted form. For this additional generality, however, one
has to depart from the dyadic blocks [2”,2“*!) and has to allow general blocks
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[my, my41). In addition there is an analogue of the blocking technique for inte-
gral norms of functions on the real line, so that everything that can be done for
series can also be done for integrals.

In particular we shall here prove a conjecture of Bennett (BIII, pp. 160-161)
and answer two of his open problems (BII, p. 393; BIV, p. 37). In addition,
the blocking technique leads to elementary and unified proofs for a large part
of Bennett’s investigations in his four papers as far as its qualitative aspect is
concerned. This is especially interesting at those points where Bennett uses deep
functional analytic techniques, for example in BIIL.

Another aspect of our work is more “philosophical”. A striking feature of
Bennett’s papers is that many of the problems considered by him have surpris-
ingly simple answers, for example, his solution of the ces(p)-duality problem
stated above; Bennett himself expresses his surprise at various places (BIV, pp.
2, 26, 68; see also [87, Introduction]). The present notes offer an explanation for
this phenomenon: The spaces we are dealing with are, in reality, {(p, ¢)-spaces
in disguise, and these spaces are rather well-behaved.

The blocking technique, however, also has its limitations, and it is important
to be clear about this. By renorming the spaces involved we lose control over
constants, for instance in inequalities, while the major and deeper part of Ben-
nett’s work is devoted to finding best-possible constants. Thus, for example, we
can give a new proof of Hardy’s inequality in its qualitative form (0.1), but we
are not able to confirm Landau’s result [55] that K can be taken as (;27)?, which
is best-possible. In that respect our work is merely qualitative. And each of our
results in turn poses a new problem: that of finding the hidden best-possible
constants.

The blocking technique in the literature

Norms in block form have been appearing in the literature for some time, and
with it the blocking technique. The phrase “blocking technique” (or rather
blocking method) was suggested by L. Leindler in a recent publication [63, Ab-
stract] in a related context. It is also Leindler who has contributed a large
number of equivalence results between section norms and block norms over the
past decades, see [59, 65] and the literature cited therein.

Closest in spirit to our work is the use of the blocking technique in connection
with spaces of strongly Cesaro summable sequences. These investigations, which
were started by Taberski [92], Borwein [21] and Kuttner and Maddox [54] in the
early 60’s, were our main source of inspiration. For a recent survey see [71].

Norms in block form and the blocking technique also seem to come up nat-
urally when the coefficients in series expansions of functions are studied. They
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play a major role, for instance, in connection with absolute summability of or-
thogonal series (first appearance in Tandori [96], 1960; for a recent contribution
see [65]), multipliers between spaces of analytic functions (Hedlund [41], 1969;
recently [17] and [3]), spaces of Fourier coefficients of L!-functions (Fomin [32],
1978; recently [25] and [6]) and power series with positive coefficients (Mateljevié
and Pavlovié [74], 1983; recently [64]). A very recent addition is the theory of
wavelets (see, for example, [75, 6.10]). Thus in all of these areas our results are
of relevance.

The present text is the first to apply the blocking technique systematically
in the context of Hardy’s inequality. The usefulness of the technique in this area
was first observed in BIV, p. 81, but we shall see that we have to go beyond
dyadic blocks in general. We also offer the first comprehensive treatment of
the blocking technique itself. There is closely related work due to Totik and
Vincze [97] and Leindler [65]. They characterise when two given norms, one in
section form and one in block form, are equivalent (see also Section 4 and the
Appendix). The problem comes to life again, however, if one is given a norm
in one of the two forms and has to find an equivalent one in the other form,
the transformation from block form into section form posing the main difficulty.
This accounts for the fact that some authors have presented their results in
block form and have failed to re-translate them into the more natural section
form. These re-translations are not at all obvious. They were suggested to us
by Bennett’s various results.

There are analogues of the norms in block form for functions on the real
line (or, more generally, on R™). Such norms appear abundantly in Harmonic
Analysis where they have led to the notion of amalgams. We refer to [33] for a
thorough survey and also to the work of Feichtinger, see, for example, [30, 31].
Instances of the blocking technique for functions can be found in connection with
the notion of a Lebesgue point (Tandori [94]), in the context of strong Cesaro
summability of functions (Borwein [21]) and in the theory of Beurling algebras
and more general function spaces (Gilbert [34], Johnson [47]), among others.

Contents

These notes are divided into four chapters and an appendix.

Chapter I develops the blocking technique as indicated above. In Section 2
we obtain transformations from block form into section form while in Section 3
we go the opposite direction. This forms the basis of all that follows.

In Chapter II we introduce two classes of sequence spaces, c¢(a,p,q) and
d(a,p, q). These spaces contain as special cases the space ces(p) and many other
spaces. We apply the results of Chapter I to study their basic structure (Section
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6), to characterise the multipliers between these spaces and IP (Section 7) and
to obtain some factorisation results (Section 8).

Chapter III presents our main applications. In Section 9 we deal with Hardy’s
inequality with weights or, in a different language, with factorable matrices as
operators on [P; these cover the weighted mean matrices as most important spe-
cial case. In particular we prove the conjecture of Bennett mentioned above.
Section 10 studies Copson’s inequality with weights, where we also answer an-
other problem of Bennett. In Sections 11 and 12 we treat the reverses of some
classical inequalities. We end the chapter with a selection of further applications
(Section 13).

In Chapter IV we indicate integral analogues of our results. In particular we
complete an investigation started by Beesack and Heinig [9], thus answering a
third question of Bennett (BIV, p. 37).

We end these notes with an Appendix in which we apply the results of Chap-
ter I to study the equivalence of norms in section form with norms in block form
a la Totik-Vincze and Leindler.

Notation
We agree that Roman indices n, k, ... start from 1 while Greek indices v, , . ..
start from 0, if nothing else is said.

For any sequence & = (z,) we denote by P,z = (z1,...,2n,0,0,...) its n*"
section.

The space w is the space of all (real or complex) sequences, its subspace
o consists of all finite sequences. If E is a sequence space, any non-negative
sequence w defines a weighted space Fy, = {z : - w € E}, where the product
of two sequences is taken coordinatewise.

For 0 < p < oo we define its conjugate p* by ;—7 + -pl—. = 1, with the usual
convention if p = 1 or p = co. We remark that p* < 0if p < 1.

As usual the constant K appearing in inequalities may vary from occurrence
to occurrence. :

Further notation will be introduced at the beginnings of Sections 1, 5, 7 and 8.
In addition, we shall adopt the following convention: When a condition contains
asum Y p., ck over non-negative numbers, then the condition is understood to
imply that ), cx < co. The same applies to a supremum. Further conventions
will be introduced in Remark 2.2(i).



Chapter I

The Blocking Technique

1 Norms in Section Form and Norms in Block

Form

As we have seen, the norm

L& p\ /P
”z”ces(p) = (Z(; E |zk|) >
n k=1

is at the heart of Hardy’s inequality. Generalising this we assume that a = (a,)
is any sequence of non-negative terms and that 0 < p,¢ < oo. Then, for any

sequence = = (z,), we consider

lall = (Zj [ (;II")/])/

oll = (Z 2 (ki sk W] ) "

with the usual modifications if p or ¢ is infinite. By abuse of language we shall

refer to these extended quasi-seminorms briefly as norms, and we say that these

and its companion

norms are in section form. At times we shall allow additional weights, that is,
we replace z; by wizy.

Our aim is to transform these norms into block form. It turns out that it
does not suffice to consider dyadic blocks only. Thus let m = (m,),>0 be any
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indezr sequence, that is, any sequence of integers with mg = 1, m, 41 > m, for

all v and m, — oo as v — oo. The blocks associated with m are defined as
I, =[my,myy1)={n€N:m, <n<my4}

We allow the I, to be empty. The commonest blocks to be found in the literature
are the dyadic blocks defined by m, = 2. Now let « € R and 0 < p,q < o0.

Then, for any sequence = (z,), we consider

lzll = (2[21 (T mv’)”p]q)l/q,

kel,

again with modifications if p or ¢ is infinite. We call this a norm in block form.
We start by transforming norms from block form into section form because
this turns out to be the more difficult direction and it immediately implies the

opposite direction. We postpone a discussion of these results to Section 4.

2 Transformation from Block Form into Sec-

tion Form

We first define a correlation between index sequences m = (m,) and positive
monotonic sequences 8 = (s,) with s, — 0. We say that m and s are correlated
if

1 1 :
(21) 2—y > sy > vt if m, <n<myp (I/ > 1),
1 .
Sp > 3 if n<m,.

Given any such sequence 8 we see that there is a unique index sequence m
correlated to it; it is defined by mg = 1 and, for v > 1,

1
(2.2) m, = min{n isp < 2—”}

Conversely, to any index sequence m there are infinitely many sequences s cor-
related to it, for instance the one defined by

1

:2—” for m, <n<my4y,v>0.

Sn

Throughout this section, let m = (m, ) be a fixed index sequence and 8 = (s,)

a fixed positive monotonic sequence converging to 0 that is correlated to m.
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Theorem 2.1 Let 0 < p,q < 00 and a € R. Then, for any sequence = = (z,),

(Z |z,,|P)l/p] q < oo

kel,

the condition

(2.3) Z [

is equivalent to any of the following conditions, where f # 0,7 # 0 and 6 are
real numbers with y/q+ 6/p = a:

n q/p
(241) D (sB—shyy)sy P (Z si|zk|”> <oo if B>0,y>0,
n

(2.4i1) Z(sﬁ_,_l - sﬁ’;)s'],s;_fl ( si|zx|P if #<0,vy>0,
n

n

if £>0,vy<0.

(2.4iii) Y (5 —s0_y)sy* (Zsklzﬂ”) if 8<0,v<0,
(2 41V) Z(sn 1~ sﬁ)sn Spn-1 ( SkIJZkIP)

In addition, for real numbers v # 0 and § with y/q+6/p = «, (2.3) is equivalent

to

3

q/p -1
Si|1‘k|p> <o if ¥>0,

(2.4v) > 1t |z, P (

n k=1

66 q/p-1
(2.4vi) ZSZ+6|2:,,|" (Z Sill‘klp) < 00 if v<0.
n

k=

3

Remark 2.2 (i) In conditions (2.4iii) and (2.4iv) the coefficient for n = 1 is
undefined. Obviously, its value has no influence on the validity of the theorem.
However, it turns out that the most natural choice is to take its value as s], that
is, to choose s9 = oo, if one likes. In later sections, s, will be substituted by
certain expressions in ax. As a consequence, we shall there interpret Y ;. af as
oo and, as usual, 22=1 aj as 0, similarly for suprema. In conditions (2.4v) and
(2.4vi), 0 - 0" has to be interpreted as 0 even if r < 0. These interpretations are

in effect throughout these notes.
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(i1) If one is given an abstract sequence (m, ) (or (s,)) and if & # 0, then the
simplest(-looking) equivalent condition for (2.3) is obtained by taking g = v =
aq and 6 = 0:

n a/p
(2.51) Z(sfj" —spdy (E |1:k|p) < o0 if a>0,

k=1

0 q/p ‘
(2.51) ) (557 —s3%,) (Z |z,,|P> < o if a<O.
k=n

n

However, as we shall see in Chapter II, in many applications one is confronted
with a specific sequence (m,) (or (s,)), in which case it will be useful to have

available the additional parameters 3,7 and 6.

Proof of Theorem 2.1. Replacing |zk|P by |zk|, ¢/p by ¢ and ap by « shows
that we need only consider the case p = 1.

(2.3)=(2.4i). First let ¢ > 1. Then, by (2.1), we have 1/2+! < s, < 1/2¥
for n € I, and v > 1, hence

n q
S (68— )57 (z sﬁlzkl)
k=1

nel,
1 m.,.H—l q
<K Z (sh - s£+1)m ( E $i|$k|>

nel, k=1
q

1 ok 1
< K(sp, — S‘r’nm)m 2ol sz lzel )
p=0kel,

now using § = a — v/q,
q
Y. 9uv/9 9v/e

1
S Ko | 2 57 g 2o Il | 5

p=0 kel,

since ¥ > 0, we have z::ﬂ 267/9 ~ 2¥7/49 5o that we can continue by applying

Jensen’s inequality:

1 <& 2#v/a [ 9vv/e

SKWZW e ZL’HI

p=0 kel,




