| dP Seriesin Software T ?a
‘ Number3 ’ ' el

8080 Machine Language
Programmmg for Begmners

Ron Santore




80624386

8080 MACHINE
LANGUAGE
PROGRAMMING
FOR
BEGINNERS

LT

E805243¢

dilithium Press
Portland, Oregon



©Copyright, dilithium Press, 1978

All rights reserved. No part of this book may be reproduced
or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any
information storage and retrieval system, without written
permission from the author.

16 9 8 7 6 5 4 3 2 1

ISBN: 0-918398-14-2
Library of Congress number: 78-53003

Printed in the United States of America
dilithium Press

30 N.W. 23rd Place
Portland, Oregon 97210



PREFACE

This book is not simply a description of 8080 op-codes and their
definitions, but is rather a course which will lead you step by step
into the basics of machine language programming. Although mach-
ine language may appear difficult at first glance, I believe you will
find this book takes nothing for granted. In writing it, I have as-
sumed you know nothing about programming. As we go along,
everything will be defined for you, and in each chapter you will
write a program or subroutine. In this format you will only be in-
troduced to a few new programming instructions at a time. You will
start by writing simple subroutines, then you will progress to longer
programs, and, as the chapters proceed, you will become familiar
with common 8080 machine language programming instructions.

A lot of care was taken to condense the subject matter covered,
and I hope you won’t find this a wordy text. Because each and
every paragraph is important, you should not try to rush through
the chapters or try to coveralot of pages in a short period of time.

Since I am presenting this material from a beginner’s standpoint,
some of it may be old hat to you, but I wanted to give every bene-
fit to those who are new to this field. Understand that this is a book
on basics, not technique, so I assume you are a beginner with an
8080 microcomputer that you want to learn how to use. If you
find yourself reading something that you already know, read it
through anyway. In that way you may gain a better foundation for
what is to follow.






INTRODUCTION

The first section of Chapter 1 of this book provides a foundation
for your introduction into programming. In these pages I have pro-
vided brief definitions of the basic terms you will be using in the
rest of the book and for as long as you remain associated with com-
puters. These first pages contain vital information, so don’t skim
over them—take the time to absorb what they offer and you will
be better able to appreciate the rest of the book.






8062436

CONTENTS

Preface

Introduction

Background and the Output Subroutine
Output a Message 17

The Input Subroutine 23

The Random Number Generator 27
HI-LO 33

NIM 43

BUTTON-BUTTON 55

You’re On Your Own 69

Condition Bits 71

10 The Op-Codes: Defined 75
Appendix I 89

The Sum of Numbers 0 to 10
The Roll of Two Dice

Appendix II 93
A Better Random Number Generator
Appendix II1 94
8080 Refrence Table
ASCII Codes 95
Answers to Questions 97
Index 103

COONANTUEWN-



8062436

A A g
4 y N

{

\

<N,

.

1

BACKGROUND
AND THE OUTPUT

SUBROUTINE

THE BINARY SYSTEM

Our decimal number system contains ten integers. They are: 0,
1,2,3,4,5,6,7, 8, and 9. The binary number system contains
only two integers. They are O and 1. In the binary system of num-
bers, a “1” in the lowest (rightmost) column represents a decimal
1. A binary “1”’ in the next column represents a decimal 2. A bi-

nary “1” in the next column represents a decimal 4, and the next
column represents a decimal 8. Study the following table:
decimal binary
0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111
8 = 1000

Notice that we, as humans, could write any decimal number and
then also write its binary equivalent, but the binary numbers are a
little awkward for us because they take up so much space on paper
(decimal 256 = 100000000 in binary). As it turns out, though, the
binary system is much easier for a computer to handle than our
ten-digit decimal system is.



2 8080 Machine Language Programming for Beginners

Adding binary numbers is even easier than adding decimals:

0 0 1 1
X0 41 r0 +1
=0 =1 =1 =10

Notice that in the last example, a “carry” was performed—the
lowest column filled up, so a ‘1> was carried to the second column.
Can you see that in binary?

011
1001
=100

See if you can answer these questions:
1. Give the equivalents for these numbers:

decimal binary
1 =
0 =
2 =
6 —
5 =
= 11
= 111
= 100

2. How many integers are there in the binary system?
3. What do you think the decimal number 9 would look like in

binary?
4. Add the binary numbers, then write the sums in binary and in
decimal:
000 000 100 001 101 001

+001 1010 +001 +101 +010 +111

Binary numbers can get very large; when they do, they become
hard for us to remember. For now, learn the first eight binary num-
bers and be able to recognize them at a glance.

BIT

Your computer only understands binary numbers. A bit is a bi-
nary digit or integer and can only be 1 or 0. The binary number
01101011 contains eight bits.

Thisis a bit ... 1
or thisisabit...0



Background and the Output Subroutine 3

BYTE

A single bit by itself can only represent two states, a “1” or a
“0,” so in order to make the system more useful, bits are grouped
together to form bytes or words. The 8080 computer always uses
eight-bit bytes, so for your computer a byte is always eight bits of
binary information.

This is a byte ... 11100100
or thisis a byte ... 00111101

ADDRESS

An address is a place or location in memory. At each address in
memory, there is one byte of data. To see a particular data byte in
memory, just examine its address. For the 8080 system, an address
is always sixteen bits.

This is an address . . . 00001011,01101111
or this is an address . . . 10110000,10110011
Remember, each address contains one byte of data, and each

address is sixteen bits. As an example, if we look at address
00001011,01101111 we might find byte 11100100.

THE OCTAL CODE

Bytes and addresses are a little hard to remember because they

are so long, so bits are usually grouped as follows:

a typical eight-bit byte

00101011 becomes 00 101 011

and a sixteen-bit address

00000101,01101111 becomes 00 000 101,01 101 111
Now if you remember your binary numbers, you can see how to
code these numbers into octal:

the eight-bit byte

00 101 011 becomes 0 5 3

the sixteen-bit address
00 000 101,01 101 111 becomes 0 0 5,157

The octal code is very important. Study it closely and answer these
questions before going on;

1. How many bits are in a byte?
~ 2. How many bits are in an address?



4 8080 Machine Language Programming for Beginners

3. Convert these:

binary octal

00000100 =0 0 4

00000011 =

00 001 000 =

01 000 101 =

10 001 001 =

01111000 =
=001
=303
=372
=211
=065
=311

There are other ways to group bytes and addresses, but the octal
code seems to be the easiest for the beginning programmer to under-
stand. For this reason, the rest of this book is based on octal pro-
gramming. The binary numbers used in octal programming are re-
peated as follows. You will need to know them by memory.

decimal binary
0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111

AND/OR LOGIC

This part is easy! AND/OR logicis a kind of test we will be using
to check our data bits. It is a little like adding two numbers, only
with different rules.

AND: Let’s assume we want to “AND”’ two bits:
If both bits are 0, the result is 0.
If one bit is 1 and one bit is 0, the result is 0.
If both bits are 1, the result is 1.

OR:  Let’s assume we want to “OR” two bits:
If both bits are 0, the result is 0.
If one bit is 1 and one bit is 0, the result is 1.
If both bits are 1, the result is 1.



Backround and the Output Subroutine

Remember:

0
AND 0
IS O

0
OR 0

IS O

You can do it with bytes, too:

10001110
AND 11000101

0 1 1

AND 1 AND 0 AND 1

IS 0 IS 0 IS 1

0 1 1

OR 1 OR 0 OR 1

IS 1 IS 1 IS 1
11110001 11111111

AND 10011000

AND 00010001

IS 10000100

11111111
OR 00011000

IS 10010000

01010101
OR 01011100

IS 00010001

11000011
OR 00000000

IS 11111111

EXCLUSIVE OR

“Exclusive OR” is very much like “OR” logic. It is abbreviated

IS 01011101

“XOR,” and the rules are:

If both bits are 0, the result is 0.
If one bit is 1 and one bit is 0, the result is 1.
If both bits are 1, the result is 0.

IS 11000011

0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
IS 0 IS 1 IS 1 IS0
Look back at the “OR’ logic to see the difference between OR
and XOR.
Some examples using bytes:
10001110 11110001 11111111
XOR 11000101 XOR 10011000 XOR 00010001
01001011 01101001 11101110
10001110 11110001 11111111
OR 11000101 OR 10011000 OR 00010001
11001111 11111001 11111111

You will need to know the rules for AND, OR, and XOR by

memory.



8080 Machine Language Programming for Beginners

THE COMPUTER

A computer consists of three main elements:

1.

The central processor unit (CPU or MPU) controls the com-
puter. In small systems, it is usually a single integrated cir-
cuit which will “read” your program, decide what you want
done, and do it. The central processor is the brains of your
computer (besides you, of course).

The memory is simply a storage area for data. The compu-
ter’s memory can’t carry out your commands; it can only
store them while they are waiting to be read by the CPU.
Memory can store other data in addition to your program-
ming commands.

The terminal usually consists of a keyboard and a printout
device, both of which let you communicate with the com-
puter. The terminal is usually in a cabinet separate from the
main computer and is connected with wires.

COMPUTER

MEMORY [K—>| 8080 CPU <1+ TERMINAL

In some of the newest home computers, all three elements are con-
tained in the same cabinet.

The Central Processor

The central processor has eight registers in it. A register is a
“container” in which data is temporarily stored, and each register
will hold the same amount of data.

The registers are called: B

Comyg 0

ACCUMULATOR
and the Condition word

What good are the registers? You will find that registers are nec-
essary in programming.



Backround and the Output Subroutine 7

Machine language programming involves:
Putting data into a register,
or moving data from one register to another,
or retrieving data from a register
Remember:
The registers are all inside the CPU.
The most useful register is the ACCUMULATOR.

In the pages that follow we are going to start looking at the ac-
tual operation of the terminal and computer. The terminal is not
linked directly to the computer—there is a small circuit in between
called an interface. In most 8080 computer systems, the circuit is
a serial interface. With a serial interface, one bit of data at a time is
exchanged from computer to terminal or vice versa. Since we know
that one byte is eight bits, it takes time for a whole byte to be ex-
changed one bit at a time. For this reason, the usual method of data
exchange is the following:

1. Ask for the terminal STATUS byte.

2. Test the STATUS byte to see if the terminal is ready to input
or output data.

3. If the STATUS testsays that the terminal is ready, then input
or output the data; if the STATUS test says that the terminal
is not ready, then go back to step 1 and recheck the STATUS.

The rest of this book will assume that your terminal is connected
with a serial interface; the only portion of programming that con-
cerns interfacing, however, is the input/output routine. So. .. if
you have some other interface system, just disregard my Input/Out-
put routines, which will be labeled as such, and substitute your
own. MITS and IMSAI 8080 serial systems both use the same in-
put/ouput STATUS routines that I have used in this text.




8 8080 Machine Langage Programming for Beginners

Your Terminal

If you remember from page 6, the terminal lets you communi-
cate with the computer CPU. Each terminal has two numbers as-
sociated with it. I will be using the octal numbers 000 and 001 for
the terminal. Here’s how it works:

If you input from the terminal using the number
000, you will get the terminal STATUS byte. A typ-
ical STATUS byte might look like

01100011
If the first bit is a 0, the If the last bit is a O, the
terminal is ready to dis- terminal is ready to input
play output data. If the data to the CPU. If the
first bit is a 1, the termi- last bit isa 1, the terminal
nal is not ready to display is not ready to input data.

data.

The middle six bits of the STATUS byte might be any combina-
tion of 1’s and O’s, but they don’t matter to us right now; we only

care about the first or last bit when determining the terminal
STATUS.

If you input from the terminal using the number 001, you will
get the terminal DATA byte. The reason you have to get the
STATUS byte first and then get the DATA is that the computer
will operate much faster than the terminal. Your computer can take
in DATA, or put it out, much faster than the terminal can.

To input DATA from the terminal,
First get the STATUS word using octal number 000.
Wait for that last bit to go from 1 to O.
Then get the DATA using octal number 001.
To output DATA to the terminal,
First get the STATUS word using number 000.
Wait for that first bit to go from 1 to 0.
Then output the DATA using number 001.

You will understand better how this works in just a few pages
when we get into the actual programming codes, but the main thing
to remember is that the terminal can be addressed using two differ-
ent octal numbers, 000 and 001; 000 is used to determine terminal
STATUS, and 001 is used to determine terminal DATA.

The above information could be different for your system—
for instance, you might test two middle bits from the STATUS
word to determine terminal status, or your terminal might be ad-
dressed differently than 000 and 001.



Background and the Output Subroutine 9

THE ASCII CODE

The ASCII codeis justa way to represent a letter of the alphabet
or number using an eight-bit data byte. I have listed the most com-
mon codes here. You do not need to know these by memory, but
take a minute to study the table.

character binary code octal code

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00110000

OCVPNPNUNPRWNRNRYELOHVLNIOTWOZEN A" TIOTITO QT >
OV WWUWRRPRRPRRROINNN ===, ==~ 0000000
O~ ONOUMAWNRN—RONOUMAWN—RFONAUVNAWN—~,ONAWLN D WN—

OO OO0 O OO O O i et bt bt et b bt ok ot ot ot ek e ek e e ek ek ek e e e e e =



