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CHAPTER ONE

INTRODUCTION

W. R. PATTERSON

1.1 The catalytic property and what it means

The discovery of catalytic action in the early part of the nineteenth century
coincides with the emergence of chemistry as a rational science. True, applied
chemistry of a kind existed before this period, but it flourished in the absence of
any rational theory and could almost be regarded as a craft based on the
traditions of the alchemists of the previous century.

By 1770, there were 15 known and recognised elements. In the 60-year period
which followed, an additional 33 were isolated and a further 3 recognised as
their oxides. This is a measure of the intense experimental activity following
Boyle’s recognition that chemistry was properly the study of matter. It was
during this fruitful period that catalytic action was noted for the first time in a
number of isolated and diverse observations. These included the following:

(a) the ability of heated platinum wires or foils to cause oxygen to combine with
coal-gas, alcohol and ether (Davy, 1817) and to promote the union of hydrogen
and chlorine (Turner, 1834);

(b) the oxidation of hydrogen (to water) at room temperature, caused by the
presence of platinum sponge (Dobereiner, 1822);

(c) the decomposition of hydrogen peroxide by platinum, gold and silver
(Thenard, 1818);

(d) the conversion of starch to sugar on the addition of mineral acid (Kirchoff,
1812);

(e) sulphuric acid remained unchanged when it caused the dehydrogenation of
alcohol to ether—a reaction known since medieval times (Mitscherlich, 1834).

It was left to Berzelius to recognise the common theme. He concluded that a new
phenomenon had been discovered and, in 1835, applied the Greek word
catalysis (meaning decomposition or dissolution) to describe it. Erroneously, he
believed that a catalytic “force” was responsible since the catalyst was unchanged
by the reaction it precipitated.

During the latter half of the nineteenth century, the theory of chemistry

1



2 CATALYSIS

progressed considerably, and by the end of the century the kinetic theory of
gases and basic chemical kinetics had been formulated. This paved the way for
a more rigorous view of catalysis, and Ostwald in 1911 redefined catalysts as
substances which changed the velocity of a chemical reaction, thus dispelling the
intangible “catalytic force” of Berzelius.

Ostwald’s view has stood the test of time, so that the following is now
accepted as a fairly complete definition: a catalyst augments the rate of a chemical
reaction without itself becoming consumed or altering the position of final thermo-
dynamic equilibrium for that reaction.

It should be realised that, adequate though the definition is, it applies to the
ideal situation. In practice, catalysts are observed to change while acting upon
chemical species. This is particularly so for heterogeneous catalysts whose
surfaces are very sensitive to their environment and undergo changes due to
sintering, coking, structural reorganisation of the surface, etc. In many cases
these changes come about via processes not directly related to the main
chemical reaction. Furthermore, in polymerisation reactions the catalyst is not
recovered from the polymer produced. The catalytic cycle ends with the catalyst
molecule or particle becoming trapped or deactivated in the polymer matrix. In
the chapters that follow, the reader will become aware of catalyst deactivation,
regeneration, lifetime, etc. as important features in the operation of chemical
plant and he should realise that catalysts can be rather metastable materials
susceptible to change. There is no such thing as a universal catalyst. Catalysts
are merely chemicals which induce other chemicals to combine or fragment.

Specificity is an important issue in catalytic chemistry. In a situation where a
number of chemical reactions are possible, a catalyst may affect the rate of all or
Just some of them. Different catalysts will have different relative effects on these
rates. Nevertheless, for each of these separate reactions the final equilibrium
position will be determined by the thermodynamics of the overall reaction and
cannot be influenced by presence of the catalyst. This ability to direct reactions
along certain paths is a property of catalysts which is as valuable as their ability
to enhance rates of reaction.

An example of this is provided by some reactions of cyclohexene under
different conditions:

LR C,H C,H
quartz tube, no catalyst 458 A A
>300°C + 2H,
Pd catalyst
3 <300°C
+ 2

Pd catalyst
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<300°C, O,
Pd catalyst

+ 2H,0

400°C, O,
quartz tube

complex mixture of degradative oxidation
products

1.2 Catalytic reactions

Space allows only the briefest sketch of the basic features of the catalytic act.
However, the reader is referred to the many good text books which exist, and
suitable general books on catalysis which are listed at the end of the chapter.

Catalysts fall into two classes—homogeneous and heterogeneous. The former
are present in the same phase as the reactants. Normally, this is the liquid phase,
although gas-phase homogeneous catalysis is not unknown. Heterogeneous
catalysis applies to reactions where the catalyst is in a separate phase—these
reactions may be gas/solid, liquid/solid and gas/liquid.

In either case the catalytic act may be represented by five essential steps:

(1) Diffusion to the catalytic site (reactant)

(2) Bond formation at the catalytic site (reactant)
(3) Reaction of the catalyst—reactant complex

(4) Bond rupture at the catalytic site (product)

(5) Diffusion away from the catalytic site (product).

In the case of homogeneous catalysis, steps 2-4 represent the formation and
decay of the reactive intermediate; in heterogeneous catalysis they represent
surface-adsorption and desorption with reaction of the surface intermediates.

In some cases of homogeneous catalysis, the general mechanisms are now well
established —perhaps the simplest case is that of acid-catalysed rearrangements
involving carbonium ions. In others, the identity of the reactive, intermediate
complex is subject to debate; nevertheless, the fact that such a complex is a
molecular entity often reduces the number of possibilities. This is not so with
heterogeneous catalysts where the true nature of any surface species is still a
matter of conjecture. Moreover, the surface of a heterogeneous catalyst is
energetically non-uniform: that is to say, surface atoms are exposed with
varying degrees of coordinative unsaturation. Therefore, it is possible that
adsorbed reactants may be too strongly bonded to undergo further reaction.
Equally, adsorption may be too weak to allow a reactive enough intermediate
to form. This argument can be extended to compare the activity of different
catalysts for the same reaction. There are, therefore, optimum conditions for
adsorption/desorption in relation to any particular reaction. These conditions
can affect not only the rates of the catalytic reaction, but also the nature of
that reaction.

This can be more clearly seen by examining the effect of a catalyst on the
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activation energy for a given reaction. The process of adsorption on the surface
of a heterogeneous catalyst is exothermic: conversely, desorption is endothermic.
Since a chemical bond is formed with the surface, the process is known as
chemisorption where heats of adsorption are usually greater than 80kJ/mole.
Physical or Van der Waal’s adsorption is a usual prerequisite in the formation
of a chemisorbed species. (Heats of physical adsorption are 20-40 kJ/mole). The
formation of a chemisorbed species is shown diagrammatically in figure 1.1. If this
chemisorbed species undergoes a reaction with activation energy E, the activated
complex will have a potential energy which is decreased by the heat of
chemisorption, AH, (figure 1.2). In other words, chemisorption supplies some
of the energy required to form the activated complex, energy which would
otherwise only be available by raising the temperature of the system. Trans-
formation of the activated complex gives the chemisorbed product which then
absorbs energy from the system on desorption. Thus, it can be seen how in one
way a catalytic surface lowers the activation energy of a chemical reaction. If the
same reaction had taken place in the gas phase it would have energy of
activation of E. On the catalyst surface, this has been lowered by an amount
equal to the heat of chemisorption. Thus, in the appropriate rate equation, the

PE . ’ i
excited or dissociated state
0 distance from surface
AH,
AH, physical adsorption

chemical adsorption

Figure 1.1 Formation of a chemisorbed species represented by the overlap of two potential energy
curves. As an adsorbing molecule approaches the surface (thick line) it is initially physically
adsorbed forming a species lying at a distance equal to the sum of the covalent radii plus the Van
der Waal’s envelopes (~0.3-0.4nm). On closer approach to the surface, a chemisorbed species is
formed at a distance approximating to that of a chemical bond (~0.1 nm). The energy of activation
for the transition of a physisorbed to a chemisorbed species is usually low or negative.
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RPE

reactant

product

reaction path

Figure 1.2 The energy profile for a typical catalytic reaction. Note that the activation energy for the
same reaction in the gas phase is decreased by the heat of chemisorption, AH,, of the reactant.

exponential term and hence the rate will have a higher value for the catalytic
reaction than for the corresponding gas-phase reaction. Therein lies a simple
explanation of catalytic activity.

The origin of catalytic selectivity is more complex. In the simplest case, the
heat of desorption of product can determine how selective the reaction will be
for that product. If the heat of desorption is low, the product can leave the
surface easily and escape further reaction, which may be possible if the heat
of desorption is high. More important, however, is the nature of the interaction
between reactant and the active centres of the catalyst and, for that matter, the
nature of the active centres. The type of activated complex which is formed will
clearly be reflected in the products into which it decomposes.

It is not possible to calculate surface energetics of even the simplest catalytic
reactions. It is not surprising, therefore, that catalysts are discovered by the
experimental screening (often of large numbers) of candidates, rather than by
calculated design. Many of the catalytic reactions and processes that are
described in the following chapters have been discovered by this method, and it
will become obvious to the reader that the implementation of a catalyst
discovery by the chemical industry can occur long before any real scientific
understanding of its mode of operation emerges. However, lest it should be felt
that scientific endeavour in this area has little practical value, it should be
emphasised that knowledge gained about the behaviour of a catalyst in a
particular reaction can lead to improved (i.e. more selective or more active)
catalysts for that reaction. In today’s world of diminishing petrochemical feed-
stocks, and the resulting need to generate an alternative base for the industry,
selectivity is the all-important requirement for future catalytic processes.
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1.3 Available literature on catalysts and catalytic processes

The total literature on catalysis is vast. This section is intended to help the
reader locate current progress in catalytic chemistry. This includes developments
not only in the scientific sense, where selected journals are a prime source of
information, but also developments in the chemical process area where the
patent literature is often the only source of detailed knowledge.

1.3.1 The periodic scientific literature

(a) Reviews (the first three are multi-volume works that appear regularly)

Advances in Catalysis, Academic Press

Catalysis Reviews in Science and Engineering, Dekker

Advances in Organometallic Chemistry, Academic Press
Catalysis—Chemical Society (London), Specialist Periodical Reports
Aspects of Homogeneous Catalysis, D. Reidel

Fundamental Research in Homogeneous Catalysis, Plenum Press

(b) Journals of prime interest—scientific
Journal of Catalysis
Applied Catalysis
Journal of Molecular Catalysis
Kinetika i Katalitika (Academy of Sciences, USSR)— English translation, Kinetics and Catalysis,
Consultants Bureau, New York
Reaction Kinetics and Catalysis Letters
Journal of Organometallic Chemistry
Journal of the American Chemical Society
Journal of the Chemical Society, Faraday Transactions I
Surface Science

(c) Journals of prime interest—technical
Chemtech
Chemical and Engineering News
Chemical Engineering
Chemical Engineer
Chemical Engineering Progress
Hydrocarbon Processing
Oil and Gas Journal
In addition, European Chemical News, Chemical Age, and Chemical Week provide topical items
on new processes.

1.3.2 The patent literature

A patent document contains a description of the catalyst or catalytic process for
which the inventor has been granted the protection to operate free from inter-
ference from competitors. It must contain exemplification of the invention which
must be in sufficient detail to enable the reader to reproduce the basic chemistry
of the invention claimed in the patent.

Patents therefore contain a considerable amount of experimental information
in substantial detail. Details of catalyst preparation and the manner of con-
ducting the reaction are, and indeed are required to be, given in full. The



